skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Active Layer Groundwater Flow: The Interrelated Effects of Stratigraphy, Thaw, and Topography
Abstract The external drivers and internal controls of groundwater flow in the thawed “active layer” above permafrost are poorly constrained because they are dynamic and spatially variable. Understanding these controls is critical because groundwater can supply solutes such as dissolved organic matter to surface water bodies. We calculated steady‐state three‐dimensional suprapermafrost groundwater flow through the active layer using measurements of aquifer geometry, saturated thickness, and hydraulic properties collected from two major landscape types over time within a first‐order Arctic watershed. The depth position and thickness of the saturated zone is the dominant control of groundwater flow variability between sites and during different times of year. The effect of water table depth on groundwater flow dwarfs the effect of thaw depth. In landscapes with low land‐surface slopes (2–4%), a combination of higher water tables and thicker, permeable peat deposits cause relatively constant groundwater flows between the early and late thawed seasons. Landscapes with larger land‐surface slopes (4–10%) have both deeper water tables and thinner peat deposits; here the commonly observed permeability decrease with depth is more pronounced than in flatter areas, and groundwater flows decrease significantly between early and late summer as the water table drops. Groundwater flows are also affected by microtopographic features that retain groundwater that could otherwise be released as the active layer deepens. The dominant sources of groundwater, and thus dissolved organic matter, are likely wet, flatter regions with thick organic layers. This finding informs fluid flow and solute transport dynamics for the present and future Arctic.  more » « less
Award ID(s):
1637459 1936769 1753731
PAR ID:
10455211
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
8
ISSN:
0043-1397
Page Range / eLocation ID:
p. 6555-6576
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full‐factorial 1‐m3mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land‐use‐induced changes in peatland hydrology can increase the vulnerability of peatland C stores. 
    more » « less
  2. Abstract Knowing little about how porosity and permeability are distributed at depth, we commonly develop models of groundwater by treating the subsurface as a homogeneous black box even though porosity and permeability vary with depth. One reason for this depth variation is that infiltrating meteoric water reacts with minerals to affect porosity in localized zones called reaction fronts. We are beginning to learn to map and model these fronts beneath headwater catchments and show how they are distributed. The subsurface landscapes defined by these fronts lie subparallel to the soil‐air interface but with lower relief. They can be situated above, below, or at the water table. These subsurface landscapes of reaction are important because porosity developed from weathering can control subsurface water storage. In addition, porosity often changes at the weathering fronts, and when this affects permeability significantly, the front can act like a valve that re‐orients water flowing through the subsurface. We explore controls on the positions of reaction fronts under headwater landscapes by accounting for the timescales of erosion, chemical equilibration, and solute transport. One strong control on the landscape of subsurface reaction is the land surface geometry, which is in turn a function of the erosion rate. In addition, the reaction fronts, like the water table, are strongly affected by the lithology and water infiltration rate. We hypothesize that relationships among the land surface, reaction fronts, and the water table are controlled by feedbacks that can push landscapes towards an ‘ideal hill’. In this steady state, reaction‐front valves partition water volumes into shallow and deep flowpaths. These flows dissolve low‐ and high‐solubility minerals, respectively, allowing their reaction fronts to advance at the erosion rate. This conceptualization could inform better models of subsurface porosity and permeability, replacing the black box. 
    more » « less
  3. Abstract Groundwater flow direction within the critical zone of headwater catchments is often assumed to mimic land surface topographic gradients. However, groundwater hydraulic gradients are also influenced by subsurface permeability contrasts, which can result in variability in flow direction and magnitude. In this study, we investigated the relationship between shallow groundwater flow direction, surface topography, and the subsurface topography of low permeability units in a headwater catchment at the Hubbard Brook Experimental Forest (HBEF), NH. We continuously monitored shallow groundwater levels in the solum throughout several seasons in a well network (20 wells of 0.18–1.1 m depth) within the upper hillslopes of Watershed 3 of the HBEF. Water levels were also monitored in four deeper wells, screened from 2.4 to 6.9 m depth within glacial drift of the C horizon. We conducted slug tests across the well network to determine the saturated hydraulic conductivity (Ksat) of the materials surrounding each well. Results showed that under higher water table regimes, groundwater flow direction mimics surface topography, but under lower water table regimes, flow direction can deviate as much as 56 degrees from surface topography. Under these lower water table conditions, groundwater flow direction instead followed the topography of the top of the C horizon. The interquartile range ofKsatwithin the C horizon was two orders of magnitude lower than within the solum. Overall, our results suggest that the land surface topography and the top of the C horizon acted as end members defining the upper and lower bounds of flow direction variability. This suggests that temporal dynamics of groundwater flow direction should be considered when calculating hydrologic fluxes in critical zone and runoff generation studies of headwater catchments that are underlain by glacial drift. 
    more » « less
  4. In the low-relief post-glacial landscapes of the Central Lowlands of the United States, fluvial networks formed and expanded following deglaciation despite the low slopes and large fraction of the land surface occupied by closed depressions. Low relief topography allows for subtle surface water divides and increases the likelihood that groundwater divides do not coincide with surface water divides. We investigate how groundwater transfer across subtle surface water divides facilitates channel network expansion using a numerical model built on the Landlab platform. Our model simulates surface and subsurface water routing and fluvial erosion. We consider two end-member scenarios for surface water routing, one in which surface water in closed depressions is forced to connect to basin outlets (routing) and one in which surface water in closed depressions is lost to evapotranspiration (no routing). Groundwater is modeled as fully saturated flow within a confined aquifer. Groundwater emerges as surface water where the landscape has eroded to a specified depth. We held the total water flux constant and varied the fraction of water introduced as groundwater versus precipitation. Channel growth is significantly faster in routing cases than no-routing cases given identical groundwater fractions. In both routing and no-routing cases, channel expansion is fastest when ~30% of the total water enters the system as groundwater. Groundwater contributions also produce distinctive morphology including steepened channel profiles below groundwater seeps. Groundwater head gradients evolve with topography and groundwater-fed channels can grow more quickly than channels with larger surface water catchments. We conclude that rates of channel network growth in low-relief post-glacial areas are sensitive to groundwater contributions. More broadly, our findings suggest that landscape evolution models may benefit from more detailed representation of hydrologic processes. 
    more » « less
  5. Abstract Predicting rainfall‐induced landslide motion is challenging because shallow groundwater flow is extremely sensitive to the preexisting moisture content in the ground. Here, we use groundwater hydrology theory and numerical modeling combined with five years of field monitoring to illustrate how unsaturated groundwater flow processes modulate the seasonal pore water pressure rise and therefore the onset of motion for slow‐moving landslides. The onset of landslide motion at Oak Ridge earthflow in California’s Diablo Range occurs after an abrupt water table rise to near the landslide surface 52–129 days after seasonal rainfall commences. Model results and theory suggest that this abrupt rise occurs from the advection of a nearly saturated wetting front, which marks the leading edge of the integrated downward flux of seasonal rainfall, to the water table. Prior to this abrupt rise, we observe little measured pore water pressure response within the landslide due to rainfall. However, once the wetting front reaches the water table, we observe nearly instantaneous pore water pressure transmission within the landslide body that is accompanied by landslide acceleration. We cast the timescale to reach a critical pore water pressure threshold using a simple mass balance model that considers variable moisture storage with depth and explains the onset of seasonal landslide motion with a rainfall intensity‐duration threshold. Our model shows that the seasonal response time of slow‐moving landslides is controlled by the dry season vadose zone depth rather than the total landslide thickness. 
    more » « less