At nearly 2,900‐km depth, the core‐mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron‐alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure, and seismic velocities. Here we resolve the thermodynamic parameters of (Mg,Fe)O and compute the melting phase relations of the MgO‐FeO binary system at CMB conditions. Based on this phase diagram, we revisit iron infiltration into solid ferropericlase along the CMB by morphological instability and find that the length scale of infiltration is comparable with the high electrical conductivity layer inferred from core nutations. We also compute the (Mg,Fe)O‐SiO2pseudo‐binary system and find that the solidus melting temperatures near the CMB decrease with FeO and SiO2content, becoming potentially important for ultralow velocity zones. Therefore, an ultralow velocity zone composed of solid‐state bridgmanite and ferropericlase may be relatively enriched in MgO and depleted in SiO2and FeO along a hot CMB.
One of the central challenges in accurately estimating the mantle melting temperature is the sensitivity of the probe for detecting a small amount of melt at the solidus. To address this, we used a multichannel collimator to enhance the diffuse X‐ray scattering from a small amount of melt and probed an eutectic pyrolitic composition to increase the amount of melt at the solidus. Our in situ detection of diffuse scattering from the pyrolitic melt determined an anhydrous melting temperature of 3,302 ± 100 K at 119 ± 6 GPa and 3,430 ± 130 K at the core‐mantle boundary (CMB) conditions, as the upper bound temperature. Our CMB temperature is approximately 700 K lower than the previous estimates, implying much faster secular cooling and higher concentrations of S, C, O, and/or H in the region, and nonlinear, advocating the basal magma ocean hypothesis.
more » « less- Award ID(s):
- 1725094
- NSF-PAR ID:
- 10455417
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Deeply subducted carbonates likely cause low-degree melting of the upper mantle and thus play an important role in the deep carbon cycle. However, direct seismic detection of carbonate-induced partial melts in the Earth’s interior is hindered by our poor knowledge on the elastic properties of carbonate melts. Here we report the first experimentally determined sound velocity and density data on dolomite melt up to 5.9 GPa and 2046 K by in-situ ultrasonic and sink-float techniques, respectively, as well as first-principles molecular dynamics simulations of dolomite melt up to 16 GPa and 3000 K. Using our new elasticity data, the calculated V P /V S ratio of the deep upper mantle (∼180–330 km) with a small amount of carbonate-rich melt provides a natural explanation for the elevated V P /V S ratio of the upper mantle from global seismic observations, supporting the pervasive presence of a low-degree carbonate-rich partial melt (∼0.05%) that is consistent with the volatile-induced or redox-regulated initial melting in the upper mantle as argued by petrologic studies. This carbonate-rich partial melt region implies a global average carbon (C) concentration of 80–140 ppm. by weight in the deep upper mantle source region, consistent with the mantle carbon content determined from geochemical studies.more » « less
-
Abstract High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.
-
Abstract For rocky exoplanets, knowledge of their geologic characteristics such as composition and mineralogy, surface recycling mechanisms, and volcanic behavior are key to determining their suitability to host life. Thus, determining exoplanet habitability requires an understanding of surface chemistry, and understanding the composition of exoplanet surfaces necessitates applying methods from the field of igneous petrology. Piston‐cylinder partial melting experiments were conducted on two hypothetical rocky exoplanet bulk silicate compositions. HEX1, a composition with molar Mg/Si = 1.42 (higher than bulk silicate Earth's Mg/Si = 1.23) yields a solidus similar to that of Earth's undepleted mantle. However, HEX2, a composition with molar Ca/Al = 1.07 (higher than Earth Ca/Al = 0.72) has a solidus with a slope of ∼10°C/kbar (vs. ∼15°C/kbar for Earth) and as result, has much lower melting temperatures than Earth. The majority of predicted adiabats point toward the likely formation of a silicate magma ocean for exoplanets with a mantle composition similar to HEX2. For adiabats that do intersect HEX2's solidus, decompression melting initiates at pressures more than 4x greater than in the modern Earth's undepleted mantle. The experimental partial melt compositions for these exoplanet mantle analogs are broadly similar to primitive terrestrial magmas but with higher CaO, and for the HEX2 composition, higher SiO2for a given degree of melting. This first of its kind exoplanetary experimental data can be used to calibrate future exoplanet petrologic models and predict volatile solubilities, volcanic degassing, and crust compositions for exoplanets with bulk compositions and ƒO2similar to those explored herein.
-
Abstract The carbon and water cycles in the Earth's interior are linked to key planetary processes, such as mantle melting, degassing, chemical differentiation, and advection. However, the role of water in the carbon exchange between the mantle and core is not well known. Here, we show experimental results of a reaction between Fe3C and H2O at pressures and temperatures of the deep mantle and core‐mantle boundary (CMB). The reaction produces diamond, FeO, and FeHx, suggesting that water can liberate carbon from the core in the form of diamond (“core carbon extraction”) while the core gains hydrogen, if subducted water reaches to the CMB. Therefore, Earth's deep water and carbon cycles can be linked. The extracted core carbon can explain a significant amount of the present‐day mantle carbon. Also, if diamond can be collected by mantle flow in the region, it can result in unusually high seismic‐velocity structures.