Abstract Controlling adhesion on demand is essential for many manufacturing and assembly processes such as microtransfer printing. Among various strategies, pneumatics‐controlled switchable adhesion is efficient and robust but currently still suffers from challenges in miniaturization and high energy cost. In this paper, a novel way to achieve tunable adhesion using low pressure by inducing sidewall buckling in soft hollow pillars (SHPs) is introduced. It is shown that the dry adhesion of these SHPs can be changed by more than two orders of magnitude (up to 151×) using low activating pressure (≈−10 or ≈20 kPa). Large enough negative pressure triggers sidewall buckling while positive pressure induces sidewall bulging, both of which can significantly change stress distribution at the bottom surface to facilitate crack initiation and reduce adhesion therein. It is shown that a single SHP can be activated by a micropump to manipulate various lightweight objects with different curvatures and surface textures. Here, it is also demonstrated that an array of SHPs can realize selective pick‐and‐place of an array of objects. These demonstrations illustrate the robustness, simplicity, and versatility of these SHPs with highly tunable dry adhesion.
more »
« less
Active Membranes on Rigidity Tunable Foundations for Programmable, Rapidly Switchable Adhesion
Abstract Rapidly controlling and switching adhesion is necessary for applications in robotic gripping and locomotion, pick and place operations, and transfer printing. However, switchable adhesives often display a binary response (on or off) with a narrow adhesion range, lack post‐fabrication adhesion tunability, or switch slowly due to diffusion‐controlled processes. Here, pneumatically controlled shape and rigidity tuning is coupled to rapidly switch adhesion (≈0.1 s) across a wide range of programmable adhesion forces with measured switching ratios as high as 1300x. The switchable adhesion system introduces an active polydimethylsiloxane membrane supported on a compliant, foam foundation with pressure‐tunable rigidity where positive and negative pneumatic pressure synergistically control contact stiffness and geometry to activate and release adhesion. Energy‐based modeling and finite element computation demonstrate that high adhesion is achieved through a pressure‐dependent, nonlinear stiffness of the foundation, while an inflated shape at positive pressures enables easy release. This approach enables adhesion‐based gripping and material assembly, which is utilized to pick‐and‐release common objects, rough and porous materials, and arrays of elements with a greater than 14 000xrange in mass. The robust assembly of diverse components (rigid, soft, flexible) is then demonstrated to create a soft and stretchable electronic device.
more »
« less
- Award ID(s):
- 1830475
- PAR ID:
- 10455860
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 5
- Issue:
- 11
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Automated handling of microscale objects is essential for manufacturing of next-generation electronic systems. Yet, mechanical pick-and-place technologies cannot manipulate smaller objects whose surface forces dominate over gravity, and emerging microtransfer printing methods require multidirectional motion, heating, and/or chemical bonding to switch adhesion. We introduce soft nanocomposite electroadhesives (SNEs), comprising sparse forests of dielectric-coated carbon nanotubes (CNTs), which have electrostatically switchable dry adhesion. SNEs exhibit 40-fold lower nominal dry adhesion than typical solids, yet their adhesion is increased >100-fold by applying 30 V to the CNTs. We characterize the scaling of adhesion with surface morphology, dielectric thickness, and applied voltage and demonstrate digital transfer printing of films of Ag nanowires, polymer and metal microparticles, and unpackaged light-emitting diodes.more » « less
-
null (Ed.)The capability of stiffness manipulation for materials and structures is essential for tuning motion, saving energy, and delivering high power. However, high-efficiency in situ stiffness manipulation has not yet been successfully achieved despite many studies from different perspectives. Here, curved origami patterns were designed to accomplish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness response. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new applications in robotics for this particular family of origami patterns.more » « less
-
Abstract Elastomer‐granule composites have been used to switch between soft and stiff states by applying negative pressure differentials that cause the membrane to squeeze the internal grains, inducing dilation and jamming. Applications of this phenomenon have ranged from universal gripping to adaptive mobility. Previously, the combination of this jamming phenomenon with the ability to transport grains across multiple soft actuators for shape morphing has not yet been demonstrated. In this paper, the authors demonstrate the use of hollow glass spheres as granular media that functions as a jammable “quasi‐hydraulic” fluid in a fluidic elastomeric actuator that better mimics a key featur of animal musculature: independent control over i) isotonic actuation for motion; and ii) isometric actuation for stiffening without shape change. To best implement the quasi‐hydraulic fluid, the authors design and build a fluidic device. Leveraging this combination of physical properties creates a new option for fluidic actuation that allows higher specific stiffness actuators using lower volumetric flow rates in addition to independent control over shape and stiffness. These features are showcased in a robotic catcher's mitt by stiffening the fluid in the glove's open configuration for catching, unjamming the media, then pumping additional fluid to the mitt to inflate and grasp.more » « less
-
Abstract Highly tunable dry adhesion has practical ramifications in robotic manipulation. While grippers based on mechanical interlocking and suction are adopted in various industries, soft grippers that can handle small and delicate objects reliably are yet to be invented. In this paper, it is reported that the presence of an adhesive substrate against a negatively pressurized soft hemispherical shell can significantly delay buckling of the shell. The net adhesion strength of such a depressurized shell can reach 60 times that of an open shell without any pressure difference. Simultaneous measurements of internal pressure, mechanical tension, contact area, and approach distance agree well with a semi‐analytical solid‐mechanics model. Introduction of defects at the polar region of the shells does not affect adhesion under the depressurized condition but significantly reduces adhesion under no pressure, leading to even higher tunability (almost infinity). The enhanced adhesion of a depressurized shell is found to be a combined effect of dry adhesion and suction. These shell grippers are shown to be effective in the universal manipulation of various objects with wide ranges of weight, shape, surface roughness, and mechanical compliance. The proposed depressurized soft shells provide a promising robotic gripping platform for industrial adoption.more » « less
An official website of the United States government
