skip to main content

Title: Modeling nonisothermal crystallization in a BaO∙2SiO 2 glass

The accuracy of a differential thermal analysis (DTA) technique for predicting the temperature range of significant nucleation is examined in a BaO∙2SiO2glass by iterative numerical calculations. The numerical model takes account of time‐dependent nucleation, finite particle size, size‐dependent crystal growth rates, and surface crystallization. The calculations were made using the classical and, for the first time, the diffuse interface theories of nucleation. The results of the calculations are in agreement with experimental measurements, demonstrating the validity of the DTA technique. They show that this is independent of the DTA scan rate used and that surface crystallization has a negligible effect for the glass particle sizes studied. A breakdown of the Stokes‐Einstein relation between viscosity and the diffusion coefficient is demonstrated for low temperatures, near the maximum nucleation rate. However, it is shown that accurate values for the diffusion coefficient can be obtained from the induction time for nucleation and the growth velocity in this temperature range.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Journal of the American Ceramic Society
Page Range / eLocation ID:
p. 2471-2482
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bubble nucleation is the critical first step during magma degassing. The resultant number density of bubbles provides a record of nucleation kinetics and underlying eruptive conditions. The rate of bubble nucleation is strongly dependent on the surface free energy associated with nucleus formation, making the use of bubble number density for the interpretation of eruptive conditions contingent upon a sound understanding of surface tension. Based on a suite of nucleation experiments with up to >1016bubbles per unit volume of melt, and using numerical simulations of bubble nucleation and growth during each experiment, we provide a new formulation for surface tension during homogeneous nucleation of H2O bubbles in rhyolitic melt. It is based on the Tolman correction with a Tolman length ofδ = 0.32 nm, which implies an increase in surface tension of bubbles with decreasing nucleus size. Our model results indicate that experiments encompass two distinct nucleation regimes, distinguishable by the ratio of the characteristic diffusion time of water,τdiff, to the decompression time,td. Experiments with >1013 m−3bubbles are characterized byτdiff/td≪ 1, wherein the nucleation rate predominantly depends on the interplay between decompression and diffusion rates. Nucleation occurs over a short time interval with nucleation rate peaks at high values. For experiments with comparatively low bubble number density the average distance between adjacent bubbles and the diffusion timescale is large. Consequently,τdiff/td≫ 1 and nucleation is nearly unaffected by diffusion and independent of decompression rate, with bubbles nucleating at an approximately constant rate until the sample is quenched.

    more » « less
  2. null (Ed.)
    Abstract Numerical cloud models require estimates of the vapor growth rate for ice crystals. Current bulk and bin microphysical parameterizations generally assume that vapor growth is diffusion limited, though some parameterizations include the influence of surface attachment kinetics through a constant deposition coefficient. A parameterization for variable deposition coefficients is provided herein. The parameterization is an explicit function of the ambient ice supersaturation and temperature, and an implicit function of crystal dimensions and pressure. The parameterization is valid for variable surface types including growth by dislocations and growth by step nucleation. Deposition coefficients are predicted for the two primary growth directions of crystals, allowing for the evolution of the primary habits. Comparisons with benchmark calculations of instantaneous mass growth indicate that the parameterization is accurate to within a relative error of 1%. Parcel model simulations using Lagrangian microphysics as a benchmark indicate that the bulk parameterization captures the evolution of mass mixing ratio and fall speed with typical relative errors of less than 10%, whereas the average axis lengths can have errors of up to 20%. The bin model produces greater accuracy with relative errors often less that 10%. The deposition coefficient parameterization can be used in any bulk and bin scheme, with low error, if an equivalent volume spherical radius is provided. 
    more » « less
  3. Abstract

    Resorbable glasses with nominal molar compositions of 20Na2O·30[(1−x)CaO·xSrO]∙50P2O5, wherex = 0, 0.25, 0.50, 0.75, and 1, were prepared and characterized. With the replacement of CaO by SrO, the molar volume, refractive index, and coefficient of thermal expansion increased, and the glass transition temperature, crystallization temperature, and viscosity decreased. The replacement of CaO by SrO decreased the dissolution rate in 37°C water by nearly an order of magnitude. Resorbable glass fibers drawn from melts of the 20Na2O·30CaO·50P2O5glass exhibited decreasing transmission of laser light (632 nm) in a predictable way as the fiber dissolved in a phosphate buffer solution. This demonstrated that these glasses could be used to produce resorbable fibers for temporary biosensing or therapeutic applications.

    more » « less
  4. Two-dimensional (2D) substrates decorated with metal nanoparticles offer new opportunities to achieve high-performance catalytic behavior. However, little is known on how the substrates control the nucleation and growth processes of the nanoparticles. This paper presents the visualization of dynamic nucleation and growth processes of gold nanoparticles on ultrathin MoS 2 nanoflakes by in situ liquid-cell transmission electron microscopy (TEM). The galvanic displacement resulting in Au nuclei formation on MoS 2 was observed in real time inside the liquid cell. We found that the growth mechanism of Au particles on pristine MoS 2 is in between diffusion-limited and reaction-limited, possibly due to the presence of electrochemical Ostwald ripening. A larger size distribution and more orientation variation is observed for the Au particles along the MoS 2 edge than on the interior. Differing from pristine MoS 2 , sulfur vacancies on MoS 2 induce Au particle diffusion and coalescence during the growth process. Density functional theory (DFT) calculations show that the size difference is because the exposed molybdenum atoms at the edge with dangling bonds can strongly interact with Au atoms, whereas sulfur atoms on the MoS 2 interior have no dangling bonds and weakly interact with gold atoms. In addition, S vacancies on MoS 2 generate strong nucleation centers that can promote diffusion and coalescence of Au nanoparticles. The present work provides key insights into the role of 2D materials in controlling the size and orientation of noble metal nanoparticles vital to the design of next generation catalysts. 
    more » « less
  5. Abstract

    Single‐crystal architectures in glass, formed by a solid‐solid transformation via laser heating, are novel solids with a rotating lattice. To understand the process of lattice formation that proceeds via crystal growth, we have observed in situ Sb2S3crystal formation under X‐ray irradiation with simultaneous Laue micro X‐ray diffraction (μXRD) pattern collection. By translating the sample with respect to the beam, we form rotating lattice single (RLS) crystal lines with a consistently linear relationship between the rotation angle and distance from nucleation site. The lines begin with a seed crystal, followed by a transition region comprising of sub‐grain or very similarly oriented grains, followed by the presence of a rotating lattice single crystal of unrestricted length. The results demonstrate that the primary cause of lattice rotation within RLS crystals is the densification accompanying the glass → crystal transformation, rather than stresses produced from the difference in thermal expansion coefficient of the two phases or paraelectric → ferroelectric transition during cooling to ambient temperature.

    more » « less