skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flexible Implementation of the BASIL CURE
Abstract Course‐based Undergraduate Research Experiences (CUREs) can be a very effective means to introduce a large number of students to research. CUREs are often an extension of the instructor's research, which may make them difficult to replicate in other settings because of differences in expertise or facilities. The BASIL (Biochemistry Authentic Scientific Inquiry Lab) CURE has evolved over the past 4 years as faculty members with different backgrounds, facilities, and campus cultures have all contributed to a robust curriculum focusing on enzyme function prediction that is suitable for implementation in a wide variety of academic settings. © 2019 International Union of Biochemistry and Molecular Biology, 47(5):498–505, 2019.  more » « less
Award ID(s):
1709170 1709805 1710538 1709278
PAR ID:
10460093
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biochemistry and Molecular Biology Education
Volume:
47
Issue:
5
ISSN:
1470-8175
Page Range / eLocation ID:
p. 498-505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Course-based Undergraduate Research Experiences (CUREs) are an increasingly utilized model for exposing students to research. The lack of robust assessments is a major hurdle to wider adoption of CUREs. The Coronavirus Infectious Disease 2019 (COVID-19) pandemic necessitated a drastic shift of in-person courses to the online format. Using the Participant Perception Indicator (PPI) survey, we measured students’ self-reported changes in learning from such a biochemistry course at a large university in south Florida based on the Biochemistry Authentic Scientific Inquiry Lab (BASIL) model. By doing this, we were able to better understand the student-benefits of CUREs and how these benefits are affected by changes in learning modalities between two relevant semesters, i.e., winter and summer of 2020. Anticipated learning outcomes (ALOs) help partially fill the gap left by the loss of physical interaction in experimental procedures. Our analysis indicated that students learned more through bioinformatic experiments compared to their wet-lab counterparts. Using pre- and post- surveys, students reported that their experience and confidence gains lagged behind their knowledge gain of technique-based skills. Students are not as confident in their understanding of techniques when unable to perform those in the physical laboratory. Thus, despite extensive pursuit of the purpose and protocols of the experiments and techniques, neither their experience nor their confidence was on par with their knowledge. This study is one of the first examples demonstrating a quantitative student-learning assessment of a CURE in the science, technology, engineering, and mathematics (STEM) disciplines. The novel assessment strategies targeted to identify gaps in learning mastery could facilitate the adoption of CUREs, fostering opportunities for all undergraduate students to vital laboratory research experiences in STEM. 
    more » « less
  2. Abstract Course‐based undergraduate research experiences (CUREs) can provide undergraduate students access to research opportunities when student and faculty resources are limited. In addition to expanding research opportunities, CUREs may also be explored as a pedagogical tool for improving student learning of course content and laboratory skills, as well as improving meta‐cognitive features such as confidence. We examined how a 6‐week CURE in an upper‐level undergraduate biochemistry lab affected student gains in content knowledge and confidence in scientific abilities, compared to a non‐CURE section of the same course. We find that gains in content knowledge were similar between CURE and non‐CURE sections, indicating the CURE does not negatively impact student learning. The CURE was associated with a statistically significant gain in student confidence, compared to non‐CURE group. These results show that even a relatively short CURE can be effective in improving student confidence at scientific research skills, in addition to expanding access to research. 
    more » « less
  3. Abstract Lab courses are a significant component of biochemistry and molecular biology (BMB) education. In teaching the labs, we combine established techniques with novel approaches. Lab formats have also moved from traditional cookbook style labs to guided inquiry to course‐based undergraduate research experiences (CUREs), where faculty bring their own research interests into the course setting with a larger number of students in a much more restricted time frame. This presentation is designed to explore some of these ideas and challenge the reader to introduce research opportunities to all students, not just the smaller group of students in their research labs. 
    more » « less
  4. The COVID-19 outbreak has had a significant impact on higher education worldwide. In-person courses had to be quickly transited to online, including lab courses embedded with Course-based Undergraduate Research Experiences (CUREs). In response to this challenge, we successfully converted a fully in-person biochemistry lab that integrated with a 6-week modular CURE (mCURE) into a hybrid CURE (hCURE) in Fall 2020, with support from the Malate dehydrogenase CUREs Community. The hCURE was structured to have in-person labs and online activities arranged on an alternating weekly basis, so that only half of the regular class size of students attended the hands-on labs at any given time to maintain proper social distancing. To evaluate the efficacy of the hCURE, student science self-efficacy and conceptual understanding of protein structure–function relationships were measured using pre-course and post-course surveys and tests, respectively. Our data showed a significant increase in student science self-efficacy and conceptual knowledge test scores. Furthermore, we compared the pre-lab quiz scores that assessed various biochemical concepts and skills across three different semesters, Fall 2019 with a fully in-person mCURE before the pandemic, Fall 2020 with the hCURE implemented during the pandemic, and Fall 2021 when the lab returned to the fully in-person mCURE following the pandemic. A significant decline in quiz scores from Fall 2019 to Fall 2020, and an even further decline from Fall 2019 to Fall 2021 were observed, suggesting that apart from the impact of course modality, the pandemic may have exerted a lasting adverse effect on student learning. 
    more » « less
  5. ABSTRACT Course-based undergraduate research experiences (CUREs) are increasingly becoming the first, and perhaps only, research experience for many biology students. Responsible and ethical conduct of research (RECR) is crucial for the integrity of scientific research and essential for students to have an understanding of the scientific process at any academic level. However, there is a current lack of RECR education in biology CUREs. To understand the level of RECR knowledge and skills in undergraduate students, we created a diagnostic survey that uses case scenarios designed to illustrate RECR issues in the CURE classroom. Analysis of students’ responses indicated that the overall percentage of students who are able to effectively use RECR terminology and identify the impact of RECR violations on science integrity and ultimately on society is low. Furthermore, some students equated RECR violations to academic dishonesty, indicating difficulties separating the research and academic aspects of CUREs. This diagnostic tool can aid instructors in identifying gaps in student RECR knowledge for the subsequent development of RECR educational interventions, particularly to ensure the integrity of the research performed in CURE settings. 
    more » « less