skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Adaptable Tough Elastomer with Moisture‐Triggered Switchable Mechanical and Fluorescent Properties
Abstract Smart materials with coupled optical and mechanical responsiveness to external stimuli, as inspired by nature, are of interest for the biomimetic design of the next generation of soft machines and wearable electronics. A tough polymer that shows adaptable and switchable mechanical and fluorescent properties is designed using a fluorescent lanthanide, europium (Eu). The dynamic Eu‐iminodiacetate (IDA) coordination is incorporated to build up the physical cross‐linking network in the polymer film consisting of two interpenetrated networks. Reversible disruption and reformation of Eu‐IDA complexation endow high stiffness, toughness, and stretchability to the polymer elastomer through energy dissipation of dynamic coordination. Water that binds to Eu3+ions shows an interesting impact simultaneously on the mechanical strength and fluorescent emission of the Eu‐containing polymer elastomer. The mechanical states of the polymer, along with the visually optical response through the emission color change of the polymer film, are reversibly switchable with moisture as a stimulus. The coupled response in the mechanical strength and emissive color in one single material is potentially applicable for smart materials requiring an optical readout of their mechanical properties.  more » « less
Award ID(s):
1705566
PAR ID:
10460226
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
29
Issue:
34
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(N,N‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required. 
    more » « less
  2. Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly( n -butyl acrylate- co -2-hydroxy-3-dipicolylamino methacrylate) (P( n BA- co -GMADPA)). The Eu–DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu–DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu 3+ ions can weaken the cross-linking networks formed by Eu–DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers. 
    more » « less
  3. Abstract The dynamic optical switch of plasmonic nanostructures is highly desirable due to its promising applications in many smart optical devices. To address the challenges in the reversibility and transmittance contrast of the plasmonic electrochromic devices, here, a strategy is reported to fabricate color switchable electrochromic films through electro‐responsive dissolution and deposition of Ag on predefined hollow shells of Au/Ag alloy. Using the hollow Au/Ag alloy nanostructures as stable seeds for site‐specific deposition of Ag, elimination of the random self‐nucleation events is enabled and optimal reversibility in color switching is allowed. The hollow structure further enables excellent transmittance contrast between the bleached and colored states. With its additional advantages such as the convenience for preparation, high sensitivity, and field‐tunable optical property, it is believed that this new electrochromic film represents a unique platform for designing novel smart optical devices. 
    more » « less
  4. Smart materials with switchable optical properties may find interesting applications in designing advanced intelligent systems. Herein, the dynamic tuning of optical transmission is reported by controlling the orientation of 1D colloidal assemblies of magnetic nanostructures. Colloidal magnetic nanostructures of Fe3O4, including nanospheres, nanorods, and nanodiscs, are assembled into 1D chains under external magnetic fields. Magnetic tuning of the orientation of the nanochains results in a pronounced contrast in optical transmittance, which is strongly dependent on the size and shape of the primary nanostructures. Contrary to the intuitive expectation, the 1D chains of the nanospheres and nanorods exhibit lower transmittance when they are oriented parallel rather than perpendicular to the incident light, whereas the nanodisc counterpart responds oppositely due to the unique “edge‐to‐edge” assembly mode of the nanodiscs. The dynamic tuning of the optical transmittance through magnetic means is believed to have broad applications in the design of novel switchable optical devices. As an example, the incorporation of orientation‐dependent optical properties of 1D chains into the construction of intelligent polymer films with their transparency sensitive to rotation and bending is demonstrated. 
    more » « less
  5. Dynamic optical modulation in response to stimuli provides exciting opportunities for designing novel sensing, actuating, and authentication devices. Here, we demonstrate that the reversible swelling and deswelling of crosslinked polymer colloidal spheres in response to pH and temperature changes can be utilized to drive the assembly and disassembly of the embedded gold nanoparticles (AuNPs), inducing their plasmonic coupling and decoupling and, correspondingly, color changes. The multi‐responsive colloids are created by depositing a monolayer of AuNPs on the surface of resorcinol‐formaldehyde (RF) nanospheres, then overcoating them with an additional RF layer, followed by a seeded growth process to enlarge the AuNPs and reduce their interparticle separation to induce significant plasmonic coupling. This configuration facilitates dynamic modulation of plasmonic coupling through the reversible swelling/deswelling of the polymer spheres in response to pH and temperature changes. The rapid and repeatable transitions between coupled and decoupled plasmonic states of AuNPs enable reversible color switching when the polymer spheres are in colloidal form or embedded in hydrogel substrates. Furthermore, leveraging the photothermal effect and stimuli‐responsive plasmonic coupling of the embedded AuNPs enables the construction of hybrid hydrogel films featuring switchable anticounterfeiting patterns, showcasing the versatility and potential of this multi‐stimuli‐responsive plasmonic system. 
    more » « less