(Diene)Rh(I) complexes catalyze the stereoselective three‐component coupling of silyl glyoxylates, arylboronic acids, and aldehydes to give glycolate aldol products. The participation of Rh‐alkoxides in the requisite Brook rearrangement was established through two component Rh‐catalyzed couplings of silyl glyoxylates with ArB(OH)2to give silyl‐protected mandelate derivatives. The intermediacy of a chiral Rh‐enolate was inferred through enantioselective protonation using a chiral Rh‐catalyst. Diastereoselective three‐component couplings with aldehydes as terminating electrophiles to give racemic products were best achieved with a bulky aryl ester on the silyl glyoxylate reagent. Optimal enantioselective couplings were carried out with the
(Diene)Rh(I) complexes catalyze the stereoselective three‐component coupling of silyl glyoxylates, arylboronic acids, and aldehydes to give glycolate aldol products. The participation of Rh‐alkoxides in the requisite Brook rearrangement was established through two component Rh‐catalyzed couplings of silyl glyoxylates with ArB(OH)2to give silyl‐protected mandelate derivatives. The intermediacy of a chiral Rh‐enolate was inferred through enantioselective protonation using a chiral Rh‐catalyst. Diastereoselective three‐component couplings with aldehydes as terminating electrophiles to give racemic products were best achieved with a bulky aryl ester on the silyl glyoxylate reagent. Optimal enantioselective couplings were carried out with the
- Award ID(s):
- 1954835
- NSF-PAR ID:
- 10462158
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 42
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract tert ‐butyl ester variant using an anisole‐derived enantiopure tricyclo[3.2.2.02,4]nonadiene ligand. -
Abstract A novel, mixed‐ligand chiral rhodium(II) catalyst, Rh2(S‐NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S‐NTTL)3(dCPA) reveals a “chiral crown” conformation with a bulky dicyclohexylphenyl acetate ligand and three N‐naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium‐catalyzed bicyclobutanation/ copper‐catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8 % overall yield and 92 %
ee . -
Abstract A novel, mixed‐ligand chiral rhodium(II) catalyst, Rh2(S‐NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S‐NTTL)3(dCPA) reveals a “chiral crown” conformation with a bulky dicyclohexylphenyl acetate ligand and three N‐naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium‐catalyzed bicyclobutanation/ copper‐catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8 % overall yield and 92 %
ee . -
Abstract Enantioselective electrophilic aromatic nitration methodology is needed to advance chirality‐assisted synthesis (CAS). Reported here is an enantioselective aromatic nitration strategy operating with chiral diester auxiliaries, and it provides an enantioselective synthesis of a
C 3v ‐symmetric tribenzotriquinacene (TBTQ). These axially‐chiral structures are much sought‐after building blocks for CAS, but they were not accessible prior to this work in enantioenriched form without resolution of enantiomers. This nitration strategy controls the stereochemistry of threefold nitration reactions from above the aromatic rings with chiral diester arms. Dicarbonyl‐to‐arenium chelation rigidifies the reaction systems, so that remote stereocenters position the ester‐directing groups selectively over specific atoms of the TBTQ framework. Closely guided by computational design, a more selective through‐space directing arm was first predicted with density functional theory (DFT), and then confirmed in the laboratory, to outperform the initial structural design. This enantio‐ and regioselective TBTQ synthesis opens a new pathway to access building blocks for CAS. -
Abstract Enantioselective electrophilic aromatic nitration methodology is needed to advance chirality‐assisted synthesis (CAS). Reported here is an enantioselective aromatic nitration strategy operating with chiral diester auxiliaries, and it provides an enantioselective synthesis of a
C 3v ‐symmetric tribenzotriquinacene (TBTQ). These axially‐chiral structures are much sought‐after building blocks for CAS, but they were not accessible prior to this work in enantioenriched form without resolution of enantiomers. This nitration strategy controls the stereochemistry of threefold nitration reactions from above the aromatic rings with chiral diester arms. Dicarbonyl‐to‐arenium chelation rigidifies the reaction systems, so that remote stereocenters position the ester‐directing groups selectively over specific atoms of the TBTQ framework. Closely guided by computational design, a more selective through‐space directing arm was first predicted with density functional theory (DFT), and then confirmed in the laboratory, to outperform the initial structural design. This enantio‐ and regioselective TBTQ synthesis opens a new pathway to access building blocks for CAS.