Pretrained Language Models (LMs) have demonstrated ability to perform numerical reasoning by extrapolating from a few examples in few-shot settings. However, the extent to which this extrapolation relies on robust reasoning is unclear. In this paper, we investigate how well these models reason with terms that are less frequent in the pretraining data. In particular, we examine the correlations between the model performance on test instances and the frequency of terms from those instances in the pretraining data. We measure the strength of this correlation for a number of GPT-based language models (pretrained on the Pile dataset) on various numerical deduction tasks (e.g., arithmetic and unit conversion). Our results consistently demonstrate that models are more accurate on instances whose terms are more prevalent, in some cases above 70% (absolute) more accurate on the top 10% frequent terms in comparison to the bottom 10%. Overall, although LMs appear successful at few-shot numerical reasoning, our results raise the question of how much models actually generalize beyond pretraining data, and we encourage researchers to take the pretraining data into account when interpreting evaluation results.
more »
« less
Snoopy: An Online Interface for Exploring the Effect of Pretraining Term Frequencies on Few-Shot LM Performance
Current evaluation schemes for large language models often fail to consider the impact of the overlap between pretraining corpus and test data on model performance statistics. Snoopy is an online interface that allows researchers to study this impact in few-shot learning settings. Our demo provides term frequency statistics for the Pile, which is an 800 GB corpus, accompanied by the precomputed performance of EleutherAI/GPT models on more than 20 NLP benchmarks, including numerical, commonsense reasoning, natural language understanding, and question-answering tasks. Snoopy allows a user to interactively align specific terms in test instances with their frequency in the Pile, enabling exploratory analysis of how term frequency is related to the accuracy of the models, which are hard to discover through automated means. A user can look at correlations over various model sizes and numbers of in-context examples and visualize the result across multiple (potentially aggregated) datasets. Using Snoopy, we show that a researcher can quickly replicate prior analyses for numerical tasks while simultaneously allowing for much more expansive exploration that was previously challenging. Snoopy is available at https://nlp.ics.uci.edu/snoopy.
more »
« less
- Award ID(s):
- 2046873
- PAR ID:
- 10462493
- Date Published:
- Journal Name:
- Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
- Page Range / eLocation ID:
- 389 to 395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Machine learning techniques have been widely used in natural language processing (NLP). However, as revealed by many recent studies, machine learning models often inherit and amplify the societal biases in data. Various metrics have been proposed to quantify biases in model predictions. In particular, several of them evaluate disparity in model performance between protected groups and advantaged groups in the test corpus. However, we argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model. In fact, a model with similar aggregated performance between different groups on the entire data may behave differently on instances in a local region. To analyze and detect such local bias, we propose LOGAN, a new bias detection technique based on clustering. Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region and allows us to better analyze the biases in model predictions.more » « less
-
Testing is an integral but often neglected part of the software development process. Classical test generation tools such as EvoSuite generate behavioral test suites by optimizing for coverage, but tend to produce tests that are hard to understand. Language models trained on code can generate code that is highly similar to that written by humans, but current models are trained to generate each file separately, as is standard practice in natural language processing, and thus fail to consider the code- under-test context when producing a test file. In this work, we propose the Aligned Code And Tests Language Model (CAT- LM), a GPT-style language model with 2.7 Billion parameters, trained on a corpus of Python and Java projects. We utilize a novel pretraining signal that explicitly considers the mapping between code and test files when available. We also drastically increase the maximum sequence length of inputs to 8,192 tokens, 4x more than typical code generation models, to ensure that the code context is available to the model when generating test code. We analyze its usefulness for realistic applications, showing that sampling with filtering (e.g., by compilability, coverage) allows it to efficiently produce tests that achieve coverage similar to ones written by developers while resembling their writing style. By utilizing the code context, CAT-LM generates more valid tests than even much larger language models trained with more data (CodeGen 16B and StarCoder) and substantially outperforms a recent test-specific model (TeCo) at test completion. Overall, our work highlights the importance of incorporating software-specific insights when training language models for code and paves the way to more powerful automated test generation.more » « less
-
Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectivelymore » « less
-
Multilingual transformer language models have recently attracted much attention from researchers and are used in cross-lingual transfer learning for many NLP tasks such as text classification and named entity recognition.However, similar methods for transfer learning from monolingual text to code-switched text have not been extensively explored mainly due to the following challenges:(1) Code-switched corpus, unlike monolingual corpus, consists of more than one language and existing methods can’t be applied efficiently,(2) Code-switched corpus is usually made of resource-rich and low-resource languages and upon using multilingual pre-trained language models, the final model might bias towards resource-rich language. In this paper, we focus on code-switched sentiment analysis where we have a labelled resource-rich language dataset and unlabelled code-switched data. We propose a framework that takes the distinction between resource-rich and low-resource language into account.Instead of training on the entire code-switched corpus at once, we create buckets based on the fraction of words in the resource-rich language and progressively train from resource-rich language dominated samples to low-resource language dominated samples. Extensive experiments across multiple language pairs demonstrate that progressive training helps low-resource language dominated samples.more » « less