Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations.
more »
« less
Data-Driven Imputation of Miscibility of Aqueous Solutions via Graph-Regularized Logistic Matrix Factorization
Aqueous, two-phase systems (ATPSs) may form upon mixing two solutions of independently water-soluble compounds. Many separation, purification, and extraction processes rely on ATPSs. Predicting the miscibility of solutions can accelerate and reduce the cost of the discovery of new ATPSs for these applications. Whereas previous machine learning approaches to ATPS prediction used physicochemical properties of each solute as a descriptor, in this work, we show how to impute missing miscibility outcomes directly from an incomplete collection of pairwise miscibility experiments. We use graph-regularized logistic matrix factorization (GR-LMF) to learn a latent vector of each solution from (i) the observed entries in the pairwise miscibility matrix and (ii) a graph where each node is a solution and edges are relationships indicating the general category of the solute (i.e., polymer, surfactant, salt, protein). For an experimental data set of the pairwise miscibility of 68 solutions from Peacock et al. [ACS Appl. Mater. Interfaces 2021, 13, 11449–11460], we find that GR-LMF more accurately predicts missing (im)miscibility outcomes of pairs of solutions than ordinary logistic matrix factorization and random forest classifiers that use physicochemical features of the solutes. GR-LMF obviates the need for features of the solutions and solutions to impute missing miscibility outcomes, but it cannot predict the miscibility of a new solution without some observations of its miscibility with other solutions in the training data set.
more »
« less
- PAR ID:
- 10462522
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- ISSN:
- 1520-6106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Anandkumar Animashree (Ed.)Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations.more » « less
-
Social science approaches to missing values predict avoided, unrequested, or lost information from dense data sets, typically surveys. The authors propose a matrix factorization approach to missing data imputation that (1) identifies underlying factors to model similarities across respondents and responses and (2) regularizes across factors to reduce their overinfluence for optimal data reconstruction. This approach may enable social scientists to draw new conclusions from sparse data sets with a large number of features, for example, historical or archival sources, online surveys with high attrition rates, or data sets created from Web scraping, which confound traditional imputation techniques. The authors introduce matrix factorization techniques and detail their probabilistic interpretation, and they demonstrate these techniques’ consistency with Rubin’s multiple imputation framework. The authors show via simulations using artificial data and data from real-world subsets of the General Social Survey and National Longitudinal Study of Youth cases for which matrix factorization techniques may be preferred. These findings recommend the use of matrix factorization for data reconstruction in several settings, particularly when data are Boolean and categorical and when large proportions of the data are missing.more » « less
-
The Random Dot Product Graph (RDPG) is a popular generative graph model for relational data. RDPGs postulate there exist latent positions for each node, and specifies the edge formation probabilities via the inner product of the corresponding latent vectors. The embedding task of estimating these latent positions from observed graphs is usually posed as a non-convex matrix factorization problem. The workhorse Adjacency Spectral Embedding offers an approximate solution obtained via the eigendecomposition of the adjacency matrix, which enjoys solid statistical guarantees but can be computationally intensive and is formally solving a surrogate problem. In this paper, we bring to bear recent non-convex optimization advances and demonstrate their impact to RDPG inference. We develop first-order gradient descent methods to better solve the original optimization problem, and to accommodate broader network embedding applications in an organic way. The effectiveness of the resulting graph representation learning framework is demonstrated on both synthetic and real data. We show the algorithms are scalable, robust to missing network data, and can track the latent positions over time when the graphs are acquired in a streaming fashion.more » « less
-
In recent years, incomplete multi-view clustering (IMVC), which studies the challenging multi-view clustering problem on missing views, has received growing research interests. Previous IMVC methods suffer from the following issues: (1) the inaccurate imputation for missing data, which leads to suboptimal clustering performance, and (2) most existing IMVC models merely consider the explicit presence of graph structure in data, ignoring the fact that latent graphs of different views also provide valuable information for the clustering task. To overcome such challenges, we present a novel method, termed Adaptive feature imputation with latent graph for incomplete multi-view clustering (AGDIMC). Specifically, it captures the embbedded features of each view by incorporating the view-specific deep encoders. Then, we construct partial latent graphs on complete data, which can consolidate the intrinsic relationships within each view while preserving the topological information. With the aim of estimating the missing sample based on the available information, we utilize an adaptive imputation layer to impute the embedded feature of missing data by using cross-view soft cluster assignments and global cluster centroids. As the imputation progresses, the portion of complete data increases, contributing to enhancing the discriminative information contained in global pseudo-labels. Meanwhile, to alleviate the negative impact caused by inferior impute samples and the discrepancy of cluster structures, we further design an adaptive imputation strategy based on the global pseudo-label and the local cluster assignment. Experimental results on multiple real-world datasets demonstrate the effectiveness of our method over existing approaches.more » « less
An official website of the United States government

