Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method INCPROMPT to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, INCPROMPT can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ∼10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability. 
                        more » 
                        « less   
                    
                            
                            Human-in-the-loop Schema Induction
                        
                    
    
            Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction (IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1928474
- PAR ID:
- 10463289
- Date Published:
- Journal Name:
- Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
- Volume:
- 3
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With the rapid growth of online information services, a sheer volume of news data becomes available. To help people quickly digest the explosive information,we define a newproblem – schema-based news event profiling – profiling events reported in open-domain news corpora, with a set of slots and slot-value pairs for each event, where the set of slots forms the schema of an event type. Such profiling not only provides readers with concise views of events, but also facilitates various applications such as information retrieval, knowledge graph construction and question answering. It is however a quite challenging task. The first challenge is to find out events and event types because they are both initially unknown. The second difficulty is the lack of pre-defined event-type schemas. Lastly, even with the schemas extracted, to generate event profiles from them is still essential yet demanding. To address these challenges, we propose a fully automatic, unsupervised, three-step framework to obtain event profiles. First, we develop a Bayesian non-parametric model to detect events and event types by exploiting the slot expressions of the entities mentioned in news articles. Second, we propose an unsupervised embedding model for schema induction that encodes the insight: an entity may serve as the values of multiple slots in an event, but if it appears in more sentences along with the same set of more entities in the event, its slots in these sentences tend to be similar. Finally, we build event profiles by extracting slot values for each event based on the slots’ expression patterns. To the best of our knowledge, this is the first work on schema-based profiling for news events. Experimental results on a large news corpus demonstrate the superior performance of our method against the state-of-the-art baselines on event detection, schema induction and event profiling.more » « less
- 
            The rigid schemas of classical relational databases help users in specifying queries and inform the storage organization of data. However, the advantages of schemas come at a high upfront cost through schema and ETL process design. In this work, we propose a new paradigm where the database system takes a more active role in schema development and data integration. We refer to this approach as adaptive schema databases (ASDs). An ASD ingests semi-structured or unstructured data directly using a pluggable combination of extraction and data integration techniques. Over time it discovers and adapts schemas for the ingested data using information provided by data integration and information extraction techniques, as well as from queries and user-feedback. In contrast to relational databases, ASDs maintain multiple schema workspaces that represent individualized views over the data, which are fine-tuned to the needs of a particular user or group of users. A novel aspect of ASDs is that probabilistic database techniques are used to encode ambiguity in automatically generated data extraction workflows and in generated schemas. ASDs can provide users with context-dependent feedback on the quality of a schema, both in terms of its ability to satisfy a user's queries, and the quality of the resulting answers. We outline our vision for ASDs, and present a proof of concept implementation as part of the Mimir probabilistic data curation system.more » « less
- 
            Manipulating an articulated object requires perceiving its kinematic hierarchy: its parts, how each can move, and how those motions are coupled. Previous work has explored perception for kinematics, but none infers a complete kinematic hierarchy on never-before-seen object instances, without relying on a schema or template. We present a novel perception system that achieves this goal. Our system infers the moving parts of an object and the kinematic couplings that relate them. To infer parts, it uses a point cloud instance segmentation neural network and to infer kinematic hierarchies, it uses a graph neural network to predict the existence, direction, and type of edges (i.e. joints) that relate the inferred parts. We train these networks using simulated scans of synthetic 3D models. We evaluate our system on simulated scans of 3D objects, and we demonstrate a proof-of-concept use of our system to drive real-world robotic manipulation.more » « less
- 
            Abstract Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    