skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cybersecurity Education in the Age of AI: Integrating AI Learning into Cybersecurity High School Curricula
Artificial Intelligence (AI) and cybersecurity are becoming increasingly intertwined, with AI and Machine Learning (AI/ML) being leveraged for cybersecurity, and cybersecurity helping address issues caused by AI. The goal in our exploratory curricular initiative is to dovetail the need to teach these two critical, emerging topics in highschool, and create a suite of novel activities, 'AI & Cybersecurity for Teens' (ACT) that introduces AI/ML in the context of cybersecurity and prepares high school teachers to integrate them in their cybersecurity curricula. Additionally, ACT activities are designed such that teachers (and students) build a deeper understanding of how ML works and how the machine actually "learns". Such understanding will aid more meaningful interrogation of critical issues such as AI ethics and bias. ACT introduces core ML topics contextualized in cybersecurity topics through a range of programming activities and pre-programmed games in NetsBlox, an easy-to-use block-based programming environment. We conducted 2 pilot workshops with 12 high school cybersecurity teachers focused on ACT activities. Teachers' feedback was positive and encouraging but also highlighted potential challenges in implementing ACT in the classroom. This paper reports on our approach and activities design, and teachers' experiences and feedback on integrating AI into high school cybersecurity curricula.  more » « less
Award ID(s):
2113803
PAR ID:
10463540
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
54th ACM Technical Symposium on Computer Science Education
Volume:
1
Page Range / eLocation ID:
980 to 986
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Historically, female students have shown low interest in the field of computer science. Previous computer science curricula have failed to address the lack of female-centered computer science activities, such as socially relevant and real-life applications. Our new summer camp curriculum introduces the topics of artificial intelligence (AI), machine learning (ML) and other real-world subjects to engage high school girls in computing by connecting lessons to relevant and cutting edge technologies. Topics range from social media bots, sentiment of natural language in different media, and the role of AI in criminal justice, and focus on programming activities in the NetsBlox and Python programming languages. Summer camp teachers were prepared in a week-long pedagogy and peer-teaching centered professional development program where they concurrently learned and practiced teaching the curriculum to one another. Then, pairs of teachers led students in learning through hands-on AI and ML activities in a half-day, two-week summer camp. In this paper, we discuss the curriculum development and implementation, as well as survey feedback from both teachers and students. 
    more » « less
  2. Existing approaches to teaching artifcial intelligence and machine learning (ML) often focus on the use of pre-trained models or fne-tuning an existing black-box architecture. We believe ML techniques and core ML topics, such as optimization and adversarial examples, can be designed for high school age students given appropriate support. Our curricular approach focuses on teaching ML ideas by enabling students to develop deep intuition about these complex concepts by first making them accessible to novices through interactive tools, pre-programmed games, and carefully designed programming activities. Then, students are able to engage with the concepts via meaningful, hands-on experiences that span the entire ML process from data collection to model optimization and inspection. This paper describes our AI & Cybersecurity for Teens suite of curricular activities aimed at high school students and teachers. 
    more » « less
  3. As cybersecurity and AI become increasingly important, introducing these subjects to younger learners is critical. However, limited attention spans pose challenges for primary and secondary school students when learning these complex topics. By employing tools such as drones and Raspberry Pis, students can actively engage in learning cybersecurity and AI knowledge. This paper investigates the instructional benefits of Raspberry Pi and Drone platforms in K-12 education. The integration of hands-on activities through Raspberry Pi and Drone for Cybersecurity and AI content was implemented and evaluated at GenCyber summer camps in Michigan Technological University. The findings highlight the GoPiGo drone and Raspberry Pi as efficient instructional tools for teaching cybersecurity and AI to this age group. Additionally, hands-on tasks are essential for reinforcing understanding and maintaining student interest. 
    more » « less
  4. null (Ed.)
    This position paper describes our research project to improve middle school students’ use of security “best-practices” in their day-to-day online activities, while enhancing their fundamental understanding of the underlying security principles and math concepts that drive AI and cybersecurity technologies. The project involves the design and implementation of a time- and teacher-friendly learning module that can be readily integrated into existing middle school math curricula. We plan to deploy this module at a high-needs, rural-identifying middle school in South Carolina that serves underrepresented students 
    more » « less
  5. As societies rely increasingly on computers for critical functions, the importance of cybersecurity becomes ever more paramount. Even in recent months there have been attacks that halted oil production, disrupted online learning at the height of COVID, and put medical records at risk at prominent hospitals. This constant threat of privacy leaks and infrastructure disruption has led to an increase in the adoption of artificial intelligence (AI) techniques, mainly machine learning (ML), in state-of-the-art cybersecurity approaches. Oftentimes, these techniques are borrowed from other disciplines without context and devoid of the depth of understanding as to why such techniques are best suited to solve the problem at hand. This is largely due to the fact that in many ways cybersecurity curricula have failed to keep up with advances in cybersecurity research and integrating AI and ML into cybersecurity curricula is extremely difficult. To address this gap, we propose a new methodology to integrate AI and ML techniques into cybersecurity education curricula. Our methodology consists of four components: i) Analysis of Literature which aims to understand the prevalence of AI and ML in cybersecurity research, ii) Analysis of Cybersecurity Curriculum that intends to determine the materials already present in the curriculum and the possible intersection points in the curricula for the new AI material, iii) Design of Adaptable Modules that aims to design highly adaptable modules that can be directly used by cybersecurity educators where new AI material can naturally supplement/substitute for concepts or material already present in the cybersecurity curriculum, and iv) Curriculum Level Evaluation that aims to evaluate the effectiveness of the proposed methodology from both student and instructor perspectives. In this paper, we focus on the first component of our methodology - Analysis of Literature and systematically analyze over 5000 papers that were published in the top cybersecurity conferences during the last five years. Our results clearly indicate that more than 78% of the cybersecurity papers mention AI terminology. To determine the prevalence of the use of AI, we randomly selected 300 papers and performed a thorough analysis. Our results show that more than 19% of the papers implement ML techniques. These findings suggest that AI and ML techniques should be considered for future integration into cybersecurity curriculum to better align with advancements in the field. 
    more » « less