skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Amplification of near field radiation at surfaces of pure dielectric domain with anti-reflection films and photonic crystal structures
Abstract With chemical stability under high temperatures, dielectric materials can be idealized thermal emitters for different energy applications. However, dielectric materials do not support surface waves at near-infrared ranges for longer-distance thermal photon tunneling, which limits their applications in near-field thermal radiation. It is demonstrated in this study that thermal field amplification at near-infrared wavelengths at dielectric surfaces could be achieved through asymmetric Fabry–Perot resonance with anti-reflection coatings or 1D photonic crystal type structures. ⩾100 nm near-infrared thermal photon tunneling can be achieved when these thin film structures are added to the emitter and the collector surfaces. Among these two thin film structures, 1D photonic crystal type periodic structures constructed with the same high refractive index material as the emitter/collector material allow near-field thermal photon tunneling at large parallel wavenumbers. Moreover, the field amplification can be increased by adding more 1D photonic crystal layers to achieve even longer distances near field thermal photon tunneling.  more » « less
Award ID(s):
2117953
PAR ID:
10463545
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
56
Issue:
24
ISSN:
0022-3727
Page Range / eLocation ID:
245103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A mathematical model has been developed to study far-field and near-field thermal emission from non-continuous periodic structures. Non-continuous periodic structures with appropriate geometries and materials can support electric or magnetic resonance, idealized for designing far-field perfect absorbers and near-field emitters/absorbers supporting long-distance photon tunneling. However, these structures do not have close format dyadic Green’s function to describe the thermal radiation from randomly fluctuating thermal current. Thus, simulating the near-field radiation spectrum between emitters and collectors patterned with these non-continuous periodic structures is challenging. Though finding eigenmodes of white-noise-like fluctuating thermal current satisfying this specific geometry, we extended the Wiener-Chaotic expansion type of near-field simulation to study far-field and near-field thermal emission from non-continuous periodic structures. After verifications with reference cases, the new mathematical method is applied to study photon tunneling between the emitter and the collector patterned with single-ring split ring resonance rings (SRR) supporting magnetic field resonance. It is observed from the new mathematical model that long photon tunneling can occur under such a configuration through magnetic field coupling between the emitter and collector at the magnetic resonance frequency of SRRs. 
    more » « less
  2. The reciprocity between thermal emission and absorption in materials that satisfy the Lorentz reciprocity places a fundamental constraint on photonic energy conversion and thermal management. For approaching the ultimate thermodynamic limits in various photonic energy conversions and achieving nonreciprocal radiative thermal management, broadband nonreciprocal thermal emission is desired. However, existing designs of nonreciprocal emitters are narrowband. Here, we introduce a gradient epsilon-near-zero magneto-optical metamaterial for achieving broadband nonreciprocal thermal emission. We start by analyzing the nonreciprocal thermal emission and absorption in a thin layer of epsilon-near-zero magneto-optical material atop a substrate. We use temporal coupled-mode theory to elucidate the mechanism of nonreciprocal emission in the thin-film emitter. We then introduce a general approach for achieving broadband nonreciprocal emission by using a gradient epsilon-near-zero magnetooptical metamaterial. We numerically demonstrate broadband nonreciprocal emission in gradient-doped semiconductor multilayer, as well as in a magnetic Weyl semimetal multilayer with gradient chemical potential. Our approach for achieving broadband nonreciprocal emitters is useful for developing broadband nonreciprocal devices for energy conversion and thermal management. 
    more » « less
  3. null (Ed.)
    It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance. 
    more » « less
  4. Chalcogenide hybrid inorganic/organic polymers (CHIPs) are a new class of optical polymeric materials for imaging and photonic applications due to their high refractive indices and high optical transmission at visible and infrared wavelengths. In this study, we characterize these polymers to study the refractive index and delve into the electronic properties by way of measurements of their dielectric constants. Ellipsometry is used to determine the refractive indices for wavelengths from 500 nm to 12 µm, while we use capacitance measurements on thin film capacitors with a range of areas to find the dielectric constant. The results are in line with expectations based on the sulfur composition of the polymers-indices range from 1.7 to 1.85, and dielectric constants range from 2.6 to 3. With these measurements, these sulfur polymer materials are established to be good candidates for optical and photonic applications, particularly with respect to telecommunications. The dielectric constants suggest that applications such as electro-optic devices and capacitors may also be viable. 
    more » « less
  5. Plasmonic metasurfaces with adjustable optical responses can be achieved through phase change materials (PCMs) with high optical contrast. However, the on–off behavior of the phase change process results in the binary response of photonic devices, limiting the applications to the two-stage modulation. In this work, we propose a reconfigurable metasurface emitter based on a gold nanorod array on a VO2 thin film for achieving continuously tunable narrowband thermal emission. The electrode line connecting the center of each nanorod not only enables emission excitation electrically but also activates the phase transition of VO2 beneath the array layer due to Joule heating. The change in the dielectric environment due to the VO2 phase transition results in the modulation of emissivity from the plasmonic metasurfaces. The device performances regarding critical geometrical parameters are analyzed based on a fully coupled electro-thermo-optical finite element model. This new metasurface structure extends the binary nature of PCM based modulations to continuous reconfigurability and provides new possibilities toward smart metasurface emitters, reflectors, and other nanophotonic devices. 
    more » « less