skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Recent technical and scientific highlights from the CHARA Array
The Center for High Angular Resolution Astronomy (CHARA) Array is a six-element interferometer with baselines ranging from 34 to 331 m. Three new beam combiners are entering operation: MYSTIC is a 6-telescope combiner for K-band; SPICA is a 6-telescope combiner for the visible R-band; and SILMARIL is a 3-telescope combiner for high sensitivity in H and K-bands. A seventh, portable telescope will use fiber optics for beam transport and will increase the baselines to 1 km. Observing time is available through a program funded by NSF. The programs are solicited and peer-reviewed by NSF’s National Optical Infrared Astronomy Research Laboratory. The open community access has significantly expanded the range of astronomical investigations of stars and their environments. Here we summarize the scientific work and the on-going technical advances of the CHARA Array.  more » « less
Award ID(s):
1908026
PAR ID:
10463748
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Editor(s):
Mérand, Antoine; Sallum, Stephanie; Sanchez-Bermudez, Joel
Date Published:
Journal Name:
Optical and Infrared Interferometry and Imaging VIII
Volume:
12183
Page Range / eLocation ID:
1-18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mérand, Antoine; Sallum, Stephanie; Sanchez-Bermudez, Joel (Ed.)
    The Michigan Young STar Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the United States National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA array in July 2021, with baselines up to 331 meters, MYSTIC provides a maximum angular resolution of λ/2B ∼ 0.7 mas. The instrument injects phase corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC utilizes a high frame rate, ultra-low read noise SAPHIRA detector, and implements two beam combiners: a 6-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a 4-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J+H band) instrument for simultaneous fringe-tracking and imaging, and shares its software suite with the latter to allow a single observer to operate both instruments. Herein, we present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future. 
    more » « less
  2. Mérand, Antoine; Sallum, Stephanie; Tuthill, Peter G. (Ed.)
    We present a new polarimetric mode for the MIRC-X 6-telescope beam combiner at CHARA. Utilizing the extensive u - v coverage afforded by CHARA this mode will be able to resolve and constrain scattered light in environs at milliarcsecond separations of target stars, a largely unexplored parameter space to-date in astronomy. Notably, this upgrade will allow for the investigation of the scattering properties of the inner dust wall at the sublimation radius of Herbig Ae/Be star disks, dust shells surrounding evolved stars, and gas-rich disks around Be stars. Our design adds a series of rotating half-wave plates, achromatic across J- and H-bands, and a polarizing beamsplitter into the MIRC-X beam path. In this work, we also preview on-sky observations, discussing ongoing work calibrating instrumental polarization effects in the CHARA beam path as well as upgrades to the MIRC-X data reduction pipeline. 
    more » « less
  3. We are resolving the orbits of spectroscopic binary stars in the Hyades Cluster using the CHARA Array. We obtained positions and flux ratios in the H-band using the MIRC-X combiner and the K-band using the recently commissioned MYSTIC combiner. We present preliminary orbital fits and mass estimates for four binary systems (HD 27691, HD 28033, HD 28294, and HD 28394). The sample consists of binaries where the primary stars have F-G spectral types and the companions are low mass stars with masses in the range of 0.3-0.9 Msun. The results will be used to test evolutionary models for low mass stars. The large mass difference between the components will provide leverage for testing the isochrones and refining the age of the Hyades cluster. 
    more » « less
  4. Abstract We use the Very Energetic Radiation Imaging telescope Array System (VERITAS) imaging air Cherenkov telescope array to obtain the first measured angular diameter ofβUMa at visual wavelengths using stellar intensity interferometry (SII) and independently constrain the limb-darkened angular diameter. The age of the Ursa Major moving group has been assessed from the ages of its members, including nuclear member Merak (βUMa), an A1-type subgiant, by comparing effective temperature and luminosity constraints to model stellar evolution tracks. Previous interferometric limb-darkened angular-diameter measurements ofβUMa in the near-infrared (Center for High Angular Resolution Astronomy (CHARA) Array, 1.149 ± 0.014 mas) and mid-infrared (Keck Nuller, 1.08 ± 0.07 mas), together with the measured parallax and bolometric flux, have constrained the effective temperature. This paper presents current VERITAS-SII observation and analysis procedures to derive squared visibilities from correlation functions. We fit the resulting squared visibilities to find a limb-darkened angular diameter of 1.07 ± 0.04 (stat) ± 0.05 (sys) mas, using synthetic visibilities from a stellar atmosphere model that provides a good match to the spectrum ofβUMa in the optical wave band. The VERITAS-SII limb-darkened angular diameter yields an effective temperature of 9700 ± 200 ± 200 K, consistent with ultraviolet spectrophotometry, and an age of 390 ± 29 ± 32 Myr, using MESA Isochrones and Stellar Tracks. This age is consistent with 408 ± 6 Myr from the CHARA Array angular diameter. 
    more » « less
  5. Abstract Polarimetric data provide key insights into infrared emission mechanisms in the inner disks of young stellar objects (YSOs) and the details of dust formation around asymptotic giant branch (AGB) stars. While polarization measurements are well-established in radio interferometry, they remain challenging at visible and near-infrared wavelengths, due to the significant time-variable birefringence introduced by the complex optical beam train. In this study, we characterize instrumental polarization effects within the optical path of the Center for High Angular Resolution Astronomy (CHARA) Array, focusing on theH-band MIRC-X andK-band MYSTIC beam combiners. Using the Jones matrix formalism, we developed a comprehensive model describing diattenuation and retardance across the array. By applying this model to an unpolarized calibrator, we derived the instrumental parameters for both MIRC-X and MYSTIC. Our results show differential diattenuation consistent with ≥97% reflectivity per aluminum-coated surface at 45° incidence. The differential retardance exhibits small wavelength-dependent variations, in some cases larger than we expected. Notably, telescope W2 exhibits a significantly larger phase shift in the Coudé path, attributable to a fixed aluminum mirror (M4) used in place of deformable mirrors present on the other telescopes during the observing run. We also identify misalignments in the LiNbO3birefringent compensator plates on S1 (MIRC-X) and W2 (MYSTIC). After correcting for night-to-night offsets, we achieve calibration accuracies of ±3.4% in visibility ratio and ± 1 . ° 4 in differential phase for MIRC-X, and ±5.9% and ± 2 . ° 4 , respectively, for MYSTIC. Given that the differential intrinsic polarization of spatially resolved sources, such as AGB stars and YSOs, typically greater than these instrumental uncertainties, our results demonstrate that CHARA is now capable of achieving high-accuracy measurements of intrinsic polarization in astrophysical targets. 
    more » « less