A bstract In the context of holography, entanglement entropy can be studied either by i) extremal surfaces or ii) bit threads, i.e., divergenceless vector fields with a norm bound set by the Planck length. In this paper we develop a new method for metric reconstruction based on the latter approach and show the advantages over existing ones. We start by studying general linear perturbations around the vacuum state. Generic thread configurations turn out to encode the information about the metric in a highly nonlocal way, however, we show that for boundary regions with a local modular Hamiltonian there is always a canonical choice for the perturbed thread configurations that exploits bulk locality. To do so, we express the bit thread formalism in terms of differential forms so that it becomes manifestly background independent. We show that the Iyer-Wald formalism provides a natural candidate for a canonical local perturbation, which can be used to recast the problem of metric reconstruction in terms of the inversion of a particular linear differential operator. We examine in detail the inversion problem for the case of spherical regions and give explicit expressions for the inverse operator in this case. Going beyond linear order, we argue that the operator that must be inverted naturally increases in order. However, the inversion can be done recursively at different orders in the perturbation. Finally, we comment on an alternative way of reconstructing the metric non-perturbatively by phrasing the inversion problem as a particular optimization problem.
more »
« less
Gauge invariants of linearized gravity with a general background metric
Abstract In linearized gravity with distributed matter, the background metric has no generic symmetries, and decomposition of the metric perturbation into global normal modes is generally impractical. This complicates the identification of the gauge-invariant part of the perturbation, which is a concern, for example, in the theory of dispersive gravitational waves (GWs) whose energy–momentum must be gauge-invariant. Here, we propose how to identify the gauge-invariant part of the metric perturbation and the six independent gauge invariants per se for an arbitrary background metric. For the Minkowski background, the operator that projects the metric perturbation on the invariant subspace is proportional to the well-known dispersion operator of linear GWs in vacuum. For a general background, this operator is expressed in terms of the Green’s operator of the vacuum wave equation. If the background is smooth, it can be found asymptotically using the inverse scale of the background metric as a small parameter.
more »
« less
- Award ID(s):
- 1903130
- PAR ID:
- 10463934
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 39
- Issue:
- 24
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 245003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The gravitational perturbations of a rotating Kerr black hole are notoriously complicated, even at the linear level. In 1973, Teukolsky showed that their physical degrees of freedom are encoded in two gauge-invariant Weyl curvature scalars that obey a separable wave equation. Determining these scalars is sufficient for many purposes, such as the computation of energy fluxes. However, some applications—such as second-order perturbation theory—require the reconstruction of metric perturbations. In principle, this problem was solved long ago, but in practice, the solution has never been worked out explicitly. Here, we do so by writing down the metric perturbation (in either ingoing or outgoing radiation gauge) that corresponds to a given mode of either Weyl scalar. Our formulas make no reference to the Hertz potential (an intermediate quantity that plays no fundamental role) and involve only the radial and angular Kerr modes, but not their derivatives, which can be altogether eliminated using the Teukolsky–Starobinsky identities. We expect these analytic results to prove useful in numerical studies and for extending black hole perturbation theory beyond the linear regime.more » « less
-
null (Ed.)A bstract We compute modular Hamiltonians for excited states obtained by perturbing the vacuum with a unitary operator. We use operator methods and work to first order in the strength of the perturbation. For the most part we divide space in half and focus on perturbations generated by integrating a local operator J over a null plane. Local operators with weight n ≥ 2 under vacuum modular flow produce an additional endpoint contribution to the modular Hamiltonian. Intuitively this is because operators with weight n ≥ 2 can move degrees of freedom from a region to its complement. The endpoint contribution is an integral of J over a null plane. We show this in detail for stress tensor perturbations in two dimensions, where the result can be verified by a conformal transformation, and for scalar perturbations in a CFT. This lets us conjecture a general form for the endpoint contribution that applies to any field theory divided into half-spaces.more » « less
-
Abstract In this short Note, I answer the titular question: yes, a radiation gauge can be horizon-locking. Radiation gauges are very common in black hole perturbation theory. It’s also very convenient if a gauge choice is horizon-locking, i.e. the location of the horizon is not moved by a linear metric perturbation. Therefore it is doubly convenient that a radiation gauge can be horizon-locking, when some simple criteria are satisfied. Though the calculation is straightforward, it seemed useful enough to warrant writing this Note. Finally I show an example: the vector of the Hartle–Hawking tetrad in Kerr satisfies all the conditions for ingoing radiation gauge to keep the future horizon fixed.more » « less
-
A bstract We consider quantum gravitational corrections to Maxwell’s equations on flat space background. Although the vacuum polarization is highly gauge dependent, we explicitly show that this gauge dependence is canceled by contributions from the source which disturbs the effective field and the observer who measures it. Our final result is a gauge independent, real and causal effective field equation that can be used in the same way as the classical Maxwell equation.more » « less
An official website of the United States government

