Major element oxides and Cl of dispersed (invisible to the naked eye) volcanic glass shards were measured in clastic sediments of the central Japan Trench recovered at Site M0090 during International Ocean Discovery Program Expedition 386, Japan Trench Paleoseismology. The glass shards were extracted from two giant piston cores, Core 386-M0090B-1H (Sections 1H-15, 80 cm, to 1H-14, 50 cm) and Core 386-M0090D-1H (Sections 1H-14, 0 cm, to 1H-13, 50 cm), which together represent 180 cm of the sediment. High-resolution sampling with 1 and 5 cm spacing (65 samples) aimed to better define the stratigraphic position of the To-Cu marker ash (~6000 y before present), which had previously been identified within this interval. Electron microprobe analysis reveals low-K volcanic glasses (<1.5 wt% K2O; ~67% of the glass data) and medium- and high-K glasses (>1.5 to 5 wt% K2O; ~33% of the glass data) in all 65 samples. The low-K volcanic glasses display the typical compositional characteristics of volcanic glass from the Towada volcano in Northern Honshu and may be mostly of To-Cu origin. The medium- and high-K glasses are likely an assortment of volcanic glasses produced during various Holocene and Pleistocene explosive eruptions of the Honshu arc volcanoes. Variation in grain size fraction, magnetic susceptibility, bulk density, and natural gamma radiation of the sediment sequence sampled suggests that all glass shards were emplaced in turbidite flow either syn- or posteruptively with a major explosive eruption of the Towada volcano.
more »
« less
Phases in fine volcanic ash
Abstract Volcanic ash emissions impact atmospheric processes, depositional ecosystems, human health, and global climate. These effects are sensitive to the size and composition of the ash; however, datasets describing the constituent phases over size ranges relevant for atmospheric transport and widely distributed impacts are practically nonexistent. Here, we present results of X-ray diffraction measurements on size-separated fractions of 40 ash samples from VEI 2–6 eruptions. We characterize changes in phase fractions with grainsize, tectonic setting, and whole-rock SiO2. For grainsizes < 45 μm, average fractions of crystalline silica and surface salts increased while glass and iron oxides decreased with respect to the bulk sample. Samples from arc and intraplate settings are distinguished by feldspar and clinopyroxene fractions (determined by different crystallization sequences) which, together with glass, comprise 80–100% of most samples. We provide a dataset to approximate glass-free proportions of major crystalline phases; however, glass fractions are highly variable. To tackle this, we describe regressions between glass and major crystal phase fractions that help constrain the major phase proportions in volcanic ash with limited a priori information. Using our dataset, we find that pore-free ash density is well-estimated as a function of the clinopyroxene + Fe-oxide fraction, with median values of 2.67 ± 0.01 and 2.85 ± 0.03 g/cm3for intraplate and arc samples, respectively. Finally, we discuss effects including atmospheric transport and alteration on modal composition and contextualize our proximal airfall ash samples with volcanic ash cloud properties. Our study helps constrain the atmospheric and environmental budget of the phases in fine volcanic ash and their effect on ash density, integral to refine our understanding of the impact of explosive volcanism on the Earth system from single eruptions to global modeling.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10464230
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Over the last decades, remote observation tools and models have been developed to improve the forecasting of ash‐rich volcanic plumes. One challenge in these forecasts is knowing the properties at the vent, including the mass eruption rate and grain size distribution (GSD). Volcanic lightning is a common feature of explosive eruptions with high mass eruption rates of fine particles. The GSD is expected to play a major role in generating lightning in the gas thrust region via triboelectrification. Here, we experimentally investigate the electrical discharges of volcanic ash as a function of varying GSD. We employ two natural materials, a phonolitic pumice and a tholeiitic basalt (TB), and one synthetic material (soda‐lime glass beads [GB]). For each of the three materials, coarse and fine grain size fractions with known GSDs are mixed, and the particle mixture is subjected to rapid decompression. The experiments are observed using a high‐speed camera to track particle‐gas dispersion dynamics during the experiments. A Faraday cage is used to count the number and measure the magnitude of electrical discharge events. Although quite different in chemical composition, TB and GB show similar vent dynamics and lightning properties. The phonolitic pumice displays significantly different ejection dynamics and a significant reduction in lightning generation. We conclude that particle‐gas coupling during an eruption, which in turn depends on the GSD and bulk density, plays a major role in defining the generation of lightning. The presence of fines, a broad GSD, and dense particles all promote lightning.more » « less
-
Abstract. Volcanic fallout in polar ice sheets provides important opportunities to date and correlate ice-core records as well as to investigate theenvironmental impacts of eruptions. Only the geochemical characterization of volcanic ash (tephra) embedded in the ice strata can confirm the sourceof the eruption, however, and is a requisite if historical eruption ages are to be used as valid chronological checks on annual ice layercounting. Here we report the investigation of ash particles in a Greenland ice core that are associated with a volcanic sulfuric acid layer previouslyattributed to the 79 CE eruption of Vesuvius. Major and trace element composition of the particles indicates that the tephra does not derive fromVesuvius but most likely originates from an unidentified eruption in the Aleutian arc. Using ash dispersal modeling, we find that only an eruptionlarge enough to include stratospheric injection is likely to account for the sizable (24–85 µm) ash particles observed in the Greenlandice at this time. Despite its likely explosivity, this event does not appear to have triggered significant climate perturbations, unlike some otherlarge extratropical eruptions. In light of a recent re-evaluation of the Greenland ice-core chronologies, our findings further challenge the previousassignation of this volcanic event to 79 CE. We highlight the need for the revised Common Era ice-core chronology to be formally accepted by the widerice-core and climate modeling communities in order to ensure robust age linkages to precisely dated historical and paleoclimate proxy records.more » « less
-
Abstract Explosive volcanic eruptions produce vast quantities of silicate ash, whose surfaces are subsequently altered during atmospheric transit. These altered surfaces mediate environmental interactions, including atmospheric ice nucleation, and toxic effects in biota. A lack of knowledge of the initial, pre-altered ash surface has required previous studies to assume that the ash surface composition created during magmatic fragmentation is equivalent to the bulk particle assemblage. Here we examine ash particles generated by controlled fragmentation of andesite and find that fragmentation generates ash particles with substantial differences in surface chemistry. We attribute this disparity to observations of nanoscale melt heterogeneities, in which Fe-rich nanophases in the magmatic melt deflect and blunt fractures, thereby focusing fracture propagation within aureoles of single-phase melt formed during diffusion-limited growth of crystals. In this manner, we argue that commonly observed pre-eruptive microtextures caused by disequilibrium crystallisation and/or melt unmixing can modify fracture propagation and generate primary discrepancies in ash surface chemistry, an essential consideration for understanding the cascading consequences of reactive ash surfaces in various environments.more » « less
-
Abstract During explosive volcanic eruptions, volcanic ash is ejected into the atmosphere, impacting aircraft safety and downwind communities. These volcanic clouds tend to be dominated by fine ash (<63 μm in diameter), permitting transport over hundreds to thousands of kilometers. However, field observations show that much of this fine ash aggregates into clusters or pellets with faster settling velocities than individual particles. Models of ash transport and deposition require an understanding of aggregation processes, which depend on factors like moisture content and local particle collision rates. In this study, we develop a Plume Model for Aggregate Prediction, a one‐dimensional (1D) volcanic plume model that predicts the plume rise height, concentration of water phases, and size distribution of resulting ash aggregates from a set of eruption source parameters. The plume model uses a control volume approach to solve mass, momentum, and energy equations along the direction of the plume axis. The aggregation equation is solved using a fixed pivot technique and incorporates a sticking efficiency model developed from analog laboratory experiments of particle aggregation within a novel turbulence tower. When applied to the 2009 eruption of Redoubt Volcano, Alaska, the 1D model predicts that the majority of the plume is over‐saturated with water, leading to a high rate of aggregation. Although the mean grain size of the computed Redoubt aggregates is larger than the measured deposits, with a peak at 1 mm rather than 500 μm, the present results provide a quantitative estimate for the magnitude of aggregation in an eruption.more » « less
An official website of the United States government
