skip to main content


Title: The Effects of Nonequilibrium Velocity Distributions on Alfvén Ion-cyclotron Waves in the Solar Wind
Abstract

In this work, we investigate how the complex structure found in solar wind proton velocity distribution functions (VDFs), rather than the commonly assumed two-component bi-Maxwellian structure, affects the onset and evolution of parallel-propagating microinstabilities. We use theArbitrary Linear Plasma Solver, a numerical dispersion solver, to find the real frequencies and growth/damping rates of the Alfvén modes calculated for proton VDFs extracted from Wind spacecraft observations of the solar wind. We compare this wave behavior to that obtained by applying the same procedure to core-and-beam bi-Maxwellian fits of the Wind proton VDFs. We find several significant differences in the plasma waves obtained for the extracted data and bi-Maxwellian fits, including a strong dependence of the growth/damping rate on the shape of the VDF. By applying the quasilinear diffusion operator to these VDFs, we pinpoint resonantly interacting regions in velocity space where differences in VDF structure significantly affect the wave growth and damping rates. This demonstration of the sensitive dependence of Alfvén mode behavior on VDF structure may explain why the Alfvén ion-cyclotron instability thresholds predicted by linear theory for bi-Maxwellian models of solar wind proton background VDFs do not entirely constrain spacecraft observations of solar wind proton VDFs, such as those made by the Wind spacecraft.

 
more » « less
NSF-PAR ID:
10464500
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
955
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 97
Size(s):
["Article No. 97"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A number of physical processes accompanying the solar wind interaction with the local interstellar medium (LISM) are governed by charge exchange between ions and neutral atoms of interstellar origin. A new, 3D, MHD-plasma/kinetic-neutral model is developed that self-consistently includes both neutral hydrogen and helium atoms, and their feedback on the plasma, through charge exchange and photoionization. Focusing on the transport of interstellar neutral helium, quantitative estimates are provided for bulk properties, deflection angles, and velocity distribution functions (VDFs) along the upwind direction. It is shown that the average deflection of secondary He atoms born in the outer heliosheath (OHS) from their original direction in the LISM is ∼12° in front of the heliopause, and occurs in the directions parallel to the plane formed by the velocity and magnetic field vectors in the unperturbed LISM. While these properties are consistent with Interstellar Boundary Explorer observations of the “warm breeze,” we show that charge exchange in the OHS leads to remarkable deviations of their VDF from the Maxwellian distribution. He atom filtration in the OHS results in a significant temperature anisotropy and VDF asymmetries, even for the primary helium atoms that experience no charge exchange at all. This is an entirely kinetic phenomenon that shows that primary He atoms observed at 1 au have distributions substantially different from those in the LISM.

     
    more » « less
  2. Abstract

    The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT>T(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics.

     
    more » « less
  3. null (Ed.)
    ABSTRACT Various plasma waves and instabilities are abundantly present in the solar wind plasma, as evidenced by spacecraft observations. Among these, propagating modes and instabilities driven by temperature anisotropies are known to play a significant role in the solar wind dynamics. In situ measurements reveal that the threshold conditions for these instabilities adequately explain the solar wind conditions at large heliocentric distances. This paper pays attention to the combined effects of electron firehose instability driven by excessive parallel electron temperature anisotropy (T⊥e < T∥e) at high beta conditions, and electromagnetic ion cyclotron instability driven by excessive perpendicular proton temperature anisotropy (T⊥i > T∥i). By employing quasilinear kinetic theory based upon the assumption of bi-Maxwellian velocity distribution functions for protons and electrons, the dynamical evolution of the combined instabilities and their mutual interactions mediated by the particles is explored in depth. It is found that while in some cases, the two unstable modes are excited and saturated at distinct spatial and temporal scales, in other cases, the two unstable modes are intermingled such that a straightforward interpretation is not so easy. This shows that when the dynamics of protons and electrons are mutually coupled and when multiple unstable modes are excited in the system, the dynamical consequences can be quite complex. 
    more » « less
  4. Abstract

    We investigate the local proton energization at magnetic discontinuities/intermittent structures and the corresponding kinetic signatures in velocity phase space in Alfvénic (high cross helicity) and non-Alfvénic (low cross helicity) wind streams observed by Parker Solar Probe. By means of the partial variance of increments method, we find that the hottest proton populations are localized around compressible, coherent magnetic structures in both types of wind. Analysis of parallel and perpendicular temperature distributions suggest that the Alfvénic wind undergoes preferential enhancements ofTat such structures, whereas the non-Alfvénic wind experiences preferentialTenhancements. Although proton beams are present in both types of wind, the proton velocity distribution function displays distinct features. Hot beams, i.e., beams with beam-to-core perpendicular temperatureT⊥,b/T⊥,cup to three times larger than the total distribution anisotropy, are found in the non-Alfvénic wind, whereas colder beams are in the Alfvénic wind. Our data analysis is complemented by 2.5D hybrid simulations in different geometrical setups, which support the idea that proton beams in Alfvénic and non-Alfvénic wind have different kinetic properties and different origins. The development of a perpendicular nonlinear cascade, favored in balanced turbulence, allows a preferential relative enhancement of the perpendicular plasma temperature and the formation of hot beams. Cold field-aligned beams are instead favored by Alfvén wave steepening. Non-Maxwellian distribution functions are found near discontinuities and intermittent structures, pointing to the fact that the nonlinear formation of small-scale structures is intrinsically related to the development of highly nonthermal features in collisionless plasmas. Our results contribute to understanding the role of different coherent structures in proton energization and their implication in collisionless energy dissipation processes in space plasmas.

     
    more » « less
  5. Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method for the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After the shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfvén waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of ∼7–10 due to the shock compression and the Doppler effect. 
    more » « less