skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Relational Program Logic with Data Abstraction and Dynamic Framing
Dedicated to Tony Hoare. In a paper published in 1972, Hoare articulated the fundamental notions of hiding invariants and simulations. Hiding: invariants on encapsulated data representations need not be mentioned in specifications that comprise the API of a module. Simulation: correctness of a new data representation and implementation can be established by proving simulation between the old and new implementations using a coupling relation defined on the encapsulated state. These results were formalized semantically and for a simple model of state, though the paper claimed this could be extended to encompass dynamically allocated objects. In recent years, progress has been made toward formalizing the claim, for simulation, though mainly in semantic developments. In this article, hiding and simulation are combined with the idea in Hoare’s 1969 paper: a logic of programs. For an object-based language with dynamic allocation, we introduce a relational Hoare logic with stateful frame conditions that formalizes encapsulation, hiding of invariants, and couplings that relate two implementations. Relations and other assertions are expressed in first-order logic. Specifications can express a wide range of relational properties such as conditional equivalence and noninterference with declassification. The proof rules facilitate relational reasoning by means of convenient alignments and are shown sound with respect to a conventional operational semantics. A derived proof rule for equivalence of linked programs directly embodies representation independence. Applicability to representative examples is demonstrated using an SMT-based implementation.  more » « less
Award ID(s):
1718713
PAR ID:
10465487
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Programming Languages and Systems
Volume:
44
Issue:
4
ISSN:
0164-0925
Page Range / eLocation ID:
1 to 136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Functional programs typically interact with stateful libraries that hide state behind typed abstractions. One particularly important class of applications are data structure implementations that rely on such libraries to provide a level of efficiency and scalability that may be otherwise difficult to achieve. However, because the specifications of the methods provided by these libraries are necessarily general and rarely specialized to the needs of any specific client, any required application-level invariants must often be expressed in terms of additional constraints on the (often) opaque state maintained by the library. In this paper, we consider the specification and verification of such representation invariants using symbolic finite automata (SFA). We show that SFAs can be used to succinctly and precisely capture fine-grained temporal and data-dependent histories of interactions between functional clients and stateful libraries. To facilitate modular and compositional reasoning, we integrate SFAs into a refinement type system to qualify stateful computations resulting from such interactions. The particular instantiation we consider, Hoare Automata Types (HATs), allows us to both specify and automatically type-check the representation invariants of a datatype, even when its implementation depends on stateful library methods that operate over hidden state. We also develop a new bidirectional type checking algorithm that implements an efficient subtyping inclusion check over HATs, enabling their translation into a form amenable for SMT-based automated verification. We present extensive experimental results on an implementation of this algorithm that demonstrates the feasibility of type-checking complex and sophisticated HAT-specified OCaml data structure implementations layered on top of stateful library APIs. 
    more » « less
  2. Properties such as provable security and correctness for randomized programs are naturally expressed relationally as approximate equivalences. As a result, a number of relational program logics have been developed to reason about such approximate equivalences of probabilistic programs. However, existing approximate relational logics are mostly restricted to first-order programs without general state. In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits in the relational setting to reason about relational approximation, which allows for expressive notions of modularity and composition, a range of new approximate relational rules, and an internalization of a standard limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of the results have been mechanized in the Coq proof assistant and the Iris separation logic framework. 
    more » « less
  3. null (Ed.)
    Relational Hoare logics extend the applicability of modular, deductive verification to encompass important 2-run properties including dependency requirements such as confidentiality and program relations such as equivalence or similarity between program versions. A considerable number of recent works introduce different relational Hoare logics without yet converging on a core set of proof rules. This paper looks backwards to little known early work. This brings to light some principles that clarify and organize the rules as well as suggesting a new rule and a new notion of completeness. 
    more » « less
  4. Relational verification encompasses information flow security, regression verification, translation validation for compilers, and more. Effective alignment of the programs and computations to be related facilitates use of simpler relational invariants and relational procedure specs, which in turn enables automation and modular reasoning. Alignment has been explored in terms of trace pairs, deductive rules of relational Hoare logics (RHL), and several forms of product automata. This article shows how a simple extension of Kleene Algebra with Tests (KAT), called BiKAT, subsumes prior formulations, including alignment witnesses for forall-exists properties, which brings to light new RHL-style rules for such properties. Alignments can be discovered algorithmically or devised manually but, in either case, their adequacy with respect to the original programs must be proved; an explicit algebra enables constructive proof by equational reasoning. Furthermore our approach inherits algorithmic benefits from existing KAT-based techniques and tools, which are applicable to a range of semantic models. 
    more » « less
  5. Representation predicates enable data abstraction in separation logic, but when the same concrete implementation may need to be abstracted in different ways, one needs a notion of subsumption. We demonstrate function-specification subtyping, analogous to subtyping, with a subsumption rule: if ϕ is a of ψ, that is ϕ< : ψ, then x: ϕ implies x: ψ, meaning that any function satisfying specification ϕ can be used wherever a function satisfying ψ is demanded. We extend previous notions of Hoare-logic sub-specification, which already included parameter adaption, to include framing (necessary for separation logic) and impredicative bifunctors (necessary for higher-order functions, i.e. function pointers). We show intersection specifications, with the expected relation to subtyping. We show how this enables compositional modular verification of the functional correctness of C programs, in Coq, with foundational machine-checked proofs of soundness. 
    more » « less