Abstract Increasing fine root carbon (FRC) inputs into soils has been proposed as a solution to increasing soil organic carbon (SOC). However, FRC inputs can also enhance SOC loss through priming. Here, we tested the broad-scale relationships between SOC and FRC at 43 sites across the US National Ecological Observatory Network. We found that SOC and FRC stocks were positively related with an across-ecosystem slope of 7 ± 3 kg SOC m−2per kg FRC m−2, but this relationship was driven by grasslands. Grasslands had double the across-ecosystem slope while forest FRC and SOC were unrelated. Furthermore, deep grassland soils primarily showed net SOC accrual relative to FRC input. Conversely, forests had high variability in whether FRC inputs were related to net SOC priming or accrual. We conclude that while FRC increases could lead to increased SOC in grasslands, especially at depth, the FRC-SOC relationship remains difficult to characterize in forests.
more »
« less
A Continental‐Scale Estimate of Soil Organic Carbon Change at NEON Sites and Their Environmental and Edaphic Controls
Key Points The NEON sites were estimated to have large soil organic carbon (SOC) loss in both topsoil and subsoil during 1984–2014 The carbon sequestration potential is limited in well‐developed and near carbon‐saturated soils in managed ecosystems Runoff/erosion and leaching, vertical translocation, and mineral sorption are dominant factors affecting SOC variation at National Ecological Observatory Network sites
more »
« less
- PAR ID:
- 10466432
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 128
- Issue:
- 5
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soil organic carbon (SOC) represents the largest terrestrial carbon pool. Effectively monitoring SOC at high spatial resolution is crucial for estimating carbon budgets at the ecosystem scale and informing climate change mitigation efforts at the regional scale. Traditional soil sampling methods, however, are laborious and expensive. Remote sensing platforms can be used to survey large landscapes to meet the need for rapid and cost-effective approaches for quantifying SOC at landscape to regional scales, if relationships between remotely sensed variables and SOC can be established. We developed a workflow to analyze and predict SOC content based on National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) remote sensing data. First, we benchmarked related tools and developed reproducible workflows using NEON remote sensing datasets. Hyperspectral data were extracted from the locations where NEON soil data exist. Additional variables from the LiDAR data and key metadata (climate and land cover) were extracted for those locations. Random Forest and Partial Least Squares Regression techniques were then used to create models for fine-scale SOC prediction. Cross-validation was embedded in the model creation step. The most important covariates were selected through recursive feature elimination, stepwise selection, and expert judgment. Preliminary results indicate that machine learning models can re-produce SOC measurements in testing datasets. Key predictors include topographic variables, vegetation indices, and specific wavelength bands in hyperspectral images. We are further validating our algorithms using SOC data from ISCN (International Soil Carbon Network) and SoDaH (SOils DAta Harmonization database) that are co-located with NEON sites. We are creating high-resolution SOC maps for 0-30 cm depth at NEON sites and testing our algorithms for different land use types. Our work paves the way for a broader assessment of SOC stocks using remote sensing observations, and our high-resolution SOC maps will potentially help quantify carbon budgets across heterogeneous landscapes.more » « less
-
Abstract Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data availability. We developed the Rangeland Carbon Tracking and Management (RCTM) system to track long‐term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable data sets with algorithms representing terrestrial C‐cycle processes. Bayesian calibration was conducted using quality‐controlled C flux data sets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern US rangelands to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass‐shrub mixture, and grass‐tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE <390 g C m−2) relative to net ecosystem exchange of CO2(NEE) (R2 > 0.4, RMSE <180 g C m−2). Model performance in estimating rangeland C fluxes varied by season and vegetation type. The RCTM captured the spatial variability of SOC stocks withR2 = 0.6 when validated against SOC measurements across 13 NEON sites. Model simulations indicated slightly enhanced SOC stocks for the flux tower sites during the past decade, which is mainly driven by an increase in precipitation. Future efforts to refine the RCTM system will benefit from long‐term network‐based monitoring of vegetation biomass, C fluxes, and SOC stocks.more » « less
-
null (Ed.)A major limitation to building credible soil carbon sequestration programs is the cost of measuring soil carbon change. Diffuse reflectance spectroscopy (DRS) is considered a viable low-cost alternative to traditional laboratory analysis of soil organic carbon (SOC). While numerous studies have shown that DRS can produce accurate and precise estimates of SOC across landscapes, whether DRS can detect subtle management induced changes in SOC at a given site has not been resolved. Here, we leverage archived soil samples from seven long-term research trials in the U.S. to test this question using mid infrared (MIR) spectroscopy coupled with the USDA-NRCS Kellogg Soil Survey Laboratory MIR spectral library. Overall, MIR-based estimates of SOC%, with samples scanned on a secondary instrument, were excellent with the root mean square error ranging from 0.10 to 0.33% across the seven sites. In all but two instances, the same statistically significant (p < 0.10) management effect was found using both the lab-based SOC% and MIR estimated SOC% data. Despite some additional uncertainty, primarily in the form of bias, these results suggest that large existing MIR spectral libraries can be operationalized in other laboratories for successful carbon monitoring.more » « less
-
null (Ed.)Abstract The rarity of rapid campaigns to characterize soils across scales limits opportunities to investigate variation in soil carbon stocks (SOC) storage simultaneously at large and small scales, with and without site-level replication. We used data from two complementary campaigns at 40 sites in the United States across the National Ecological Observatory Network (NEON), in which one campaign sampled profiles from closely co-located intensive plots and physically composited similar horizons, and the other sampled dozens of pedons across the landscape at each site. We demonstrate some consistencies between these distinct designs, while also revealing that within-site replication reveals patterns and predictors of SOC stocks not detectable with non-replicated designs. Both designs demonstrate that SOC stocks of whole soil profiles vary across continental-scale climate gradients. However, broad climate patterns may mask the importance of localized variation in soil physicochemical properties, as captured by within-site sampling, especially for SOC stocks of discrete genetic horizons. Within-site replication also reveals examples in which expectations based on readily explained continental-scale patterns do not hold. For example, even wide-ranging drainage class sequences within landscapes do not duplicate the clear differences in profile SOC stocks across drainage classes at the continental scale, and physicochemical factors associated with increasing B horizon SOC stocks at continental scales frequently do not follow the same patterns within landscapes. Because inferences from SOC studies are a product of their context (where, when, how), this study provides context—in terms of SOC stocks and the factors that influence them—for others assessing soils and the C cycle at NEON sites.more » « less
An official website of the United States government

