skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Exit Time Analysis for Approximations of Gradient Descent Trajectories Around Saddle Points
This paper considers the problem of understanding the exit time for trajectories of gradient-related first-order methods from saddle neighborhoods under some initial boundary conditions. Given the ‘flat’ geometry around saddle points, first-order methods can struggle to escape these regions in a fast manner due to the small magnitudes of gradients encountered. In particular, while it is known that gradient-related first-order methods escape strict-saddle neighborhoods, existing analytic techniques do not explicitly leverage the local geometry around saddle points in order to control behavior of gradient trajectories. It is in this context that this paper puts forth a rigorous geometric analysis of the gradient-descent method around strict-saddle neighborhoods using matrix perturbation theory. In doing so, it provides a key result that can be used to generate an approximate gradient trajectory for any given initial conditions. In addition, the analysis leads to a linear exit-time solution for gradient-descent method under certain necessary initial conditions, which explicitly bring out the dependence on problem dimension, conditioning of the saddle neighborhood, and more, for a class of strict-saddle functions.  more » « less
Award ID(s):
1907658 1910110 1940074 2148104
PAR ID:
10467911
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
12
Issue:
2
ISSN:
2049-8772
Page Range / eLocation ID:
714 to 786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Loss functions with a large number of saddle points are one of the major obstacles for training modern machine learning (ML) models efficiently. First-order methods such as gradient descent (GD) are usually the methods of choice for training ML models. However, these methods converge to saddle points for certain choices of initial guesses. In this paper, we propose a modification of the recently proposed Laplacian smoothing gradient descent (LSGD) [Osher et al., arXiv:1806.06317 ], called modified LSGD (mLSGD), and demonstrate its potential to avoid saddle points without sacrificing the convergence rate. Our analysis is based on the attraction region, formed by all starting points for which the considered numerical scheme converges to a saddle point. We investigate the attraction region’s dimension both analytically and numerically. For a canonical class of quadratic functions, we show that the dimension of the attraction region for mLSGD is $$\lfloor (n-1)/2\rfloor$$ , and hence it is significantly smaller than that of GD whose dimension is $n-1$ . 
    more » « less
  2. null (Ed.)
    We experimentally examine how gradient descent navigates the landscape of matrix factorization to obtain a global minimum. First, we review the critical points of matrix factorization and introduce a balanced factorization. By focusing on the balanced critical point at the origin and a subspace of unbalanced critical points, we study the effect of balance on gradient descent, including an initially unbalanced factorization and adding a balance-regularizer to the objective in the MF problem. Simulations demonstrate that maintaining a balanced factorization enables faster escape from saddle points and overall faster convergence to a global minimum. 
    more » « less
  3. Momentum stochastic gradient descent (MSGD) algorithm has been widely applied to many nonconvex optimization problems in machine learning (e.g., training deep neural networks, variational Bayesian inference, etc.). Despite its empirical success, there is still a lack of theoretical understanding of convergence properties of MSGD. To fill this gap, we propose to analyze the algorithmic behavior of MSGD by diffusion approximations for nonconvex optimization problems with strict saddle points and isolated local optima. Our study shows that the momentum helps escape from saddle points but hurts the convergence within the neighborhood of optima (if without the step size annealing or momentum annealing). Our theoretical discovery partially corroborates the empirical success of MSGD in training deep neural networks. 
    more » « less
  4. Bilevel optimization is one of the fundamental problems in machine learning and optimization. Recent theoretical developments in bilevel optimization focus on finding the first-order stationary points for nonconvex-strongly-convex cases. In this paper, we analyze algorithms that can escape saddle points in nonconvex-strongly-convex bilevel optimization. Specifically, we show that the perturbed approximate implicit differentiation (AID) with a warm start strategy finds an ϵ-approximate local minimum of bilevel optimization in $$\tilde O(\epsilon^{-2})$$ iterations with high probability. Moreover, we propose an inexact NEgative-curvature-Originated-from-Noise Algorithm (iNEON), an algorithm that can escape saddle point and find local minimum of stochastic bilevel optimization. As a by-product, we provide the first nonasymptotic analysis of perturbed multi-step gradient descent ascent (GDmax) algorithm that converges to local minimax point for minimax problems. 
    more » « less
  5. In this paper, we show that under over-parametrization several standard stochastic optimization algorithms escape saddle-points and converge to local-minimizers much faster. One of the fundamental aspects of over-parametrized models is that they are capable of interpolating the training data. We show that, under interpolation-like assumptions satisfied by the stochastic gradients in an overparametrization setting, the first-order oracle complexity of Perturbed Stochastic Gradient Descent (PSGD) algorithm to reach an \epsilon-local-minimizer, matches the corresponding deterministic rate of ˜O(1/\epsilon^2). We next analyze Stochastic Cubic-Regularized Newton (SCRN) algorithm under interpolation-like conditions, and show that the oracle complexity to reach an \epsilon-local-minimizer under interpolation-like conditions, is ˜O(1/\epsilon^2.5). While this obtained complexity is better than the corresponding complexity of either PSGD, or SCRN without interpolation-like assumptions, it does not match the rate of ˜O(1/\epsilon^1.5) corresponding to deterministic Cubic-Regularized Newton method. It seems further Hessian-based interpolation-like assumptions are necessary to bridge this gap. We also discuss the corresponding improved complexities in the zeroth-order settings. 
    more » « less