skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ONSHORE-OFFSHORE TRENDS IN THE TEMPORAL RESOLUTION OF MOLLUSCAN DEATH ASSEMBLAGES: HOW AGE-FREQUENCY DISTRIBUTIONS REVEAL QUATERNARY SEA-LEVEL HISTORY
Abstract Surficial shell accumulations from shallow marine settings are typically averaged over centennial-to-millennial time scales and dominated by specimens that died in the most recent centuries, resulting in strongly right-skewed age-frequency distributions (AFDs). However, AFDs from modern offshore settings (outer shelf and uppermost continental slope) still need to be explored. Using individually dated shells (14C-calibrated amino acid racemization), we compared AFDs along an onshore-offshore gradient across the southern Brazilian shelf, with sites ranging from the inner shelf, shallow-water (< 40 m) to offshore, deep-water (> 100 m) settings. The duration of time averaging is slightly higher in deeper water environments, and the AFD shapes change along the depositional profile. The inner shelf AFDs are strongly right-skewed due to the dominance of shells from the most recent millennia (median age range: 0–3 ka). In contrast, on the outer shelf and the uppermost continental slope, AFDs are symmetrical to left-skewed and dominated by specimens that died following the Last Glacial Maximum (median age range: 15–18 ka). The onshore-offshore changes in the observed properties of AFDs—increased median age and decreased skewness, but only slightly increased temporal mixing—likely reflect changes in sea level and concurrent water depth-related changes in biological productivity. These results suggest that on a passive continental margin subject to post-glacial sea-level changes, the magnitude of time-averaging of shell assemblages is less variable along the depositional profile than shell assemblage ages and the shapes of AFDs.  more » « less
Award ID(s):
1855381
PAR ID:
10467934
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Society for Sedimentary Geology
Date Published:
Journal Name:
Palaios
Volume:
38
Issue:
3
ISSN:
0883-1351
Page Range / eLocation ID:
148 to 157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding how time averaging changes during burial is essential for using Holocene and Anthropocene cores to analyze ecosystem change, given the many ways in which time averaging affects biodiversity measures. Here, we use transition-rate matrices to explore how the extent of time averaging changes downcore as shells transit through a taphonomically complex mixed layer into permanently buried historical layers: this is a null model, without any temporal changes in rates of sedimentation or bioturbation, to contrast with downcore patterns that might be produced by human activity. Assuming stochastic burial and exhumation movements of shellsbetweenincrements within the mixed layer and stochastic disintegrationwithinincrements, we find that almost all combinations of net sedimentation, mixing, and disintegration produce a downcore increase in time averaging (interquartile range [IQR] of shell ages), this trend is typically associated with a decrease in kurtosis and skewness and by a shift from right-skewed to symmetrical age distributions. A downcore increase in time averaging is thus the null expectation wherever bioturbation generates an internally structured mixed layer (i.e., a surface, well-mixed layer is underlain by an incompletely mixed layer): under these conditions, shells are mixed throughout the entire mixed layer at a slower rate than they are buried below it by sedimentation. This downcore trend created by mixing is further amplified by the downcore decline in disintegration rate. We find that transition-rate matrices accurately reproduce the downcore changes in IQR, skewness, and kurtosis observed in bivalve assemblages from the southern California shelf. The right-skewed shell age-frequency distributions typical of surface death assemblages—the focus of most actualistic research—might be fossilized under exceptional conditions of episodic anoxia or sudden burial. However, such right-skewed assemblages will typically not survive transit through the surface mixed layer into subsurface historical layers: they are geologically transient. The deep-time fossil record will be dominated instead by the more time-averaged assemblages with weakly skewed age distributions that form in the lower parts of the mixed layer. 
    more » « less
  2. Abstract This study examines the link between near-bottom outflows of dense water formed in Antarctic coastal polynyas and onshore intrusions of Circumpolar Deep Water (CDW) through prograde troughs cutting across the continental shelf. Numerical simulations show that the dense water outflow is primarily in the form of cyclonic eddies. The trough serves as a topographic guide that organizes the offshore-moving dense water eddies into a chain pattern. The offshore migration speed of the dense water eddies is similar to the velocity of the dense water offshore flow in the trough, which scaling analysis finds to be proportional to the reduced gravity of the dense water and the slope of the trough sidewalls and to be inversely proportional to the Coriolis parameter. Our model simulations indicate that, as these cyclonic dense water eddies move across the trough mouth into the deep ocean, they entrain CDW from offshore and carry CDW clockwise along their periphery into the trough. Subsequent cyclonic dense water eddies then entrain the intruding CDW further toward the coast along the trough. This process of recurring onshore entrainment of CDW by a topographically constrained chain of offshore-flowing dense water eddies is consistent with topographic hotspots of onshore intrusion of CDW around Antarctica identified by other studies. It can bring CDW from offshore to close to the coast and thus impact the heat flux into Antarctic coastal regions, affecting interactions among ocean, sea ice, and ice shelves. Significance StatementTroughs cutting across the Antarctic continental shelf are a major conduit for the transport of dense shelf water from coastal formation regions to the shelf break. This study describes a process in which clockwise-spinning eddies moving offshore in prograde troughs successively entrain filaments of relatively warm Circumpolar Deep Water from offshore across the entire shelf and into the coastal region. This eddy-induced transport provides a new understanding of the shelf edge exchange process identified in previous studies and a mechanism for further onshore intrusion of the warm Circumpolar Deep Water over parts of the Antarctic shelf. The resultant onshore heat flux could potentially bring a substantial amount of heat from offshore into the coastal region and thus affect ice–ocean interactions through melting sea ice and ice shelves. 
    more » « less
  3. Abstract Oceanographic and evolutionary inferences based on fossil assemblages can be obscured by age offsets among co‐occurring shells (i.e., time averaging). To identify the contributions of sedimentation, mixing, durability, and production to within‐ and between‐species age offsets, we analyze downcore changes in the age‐frequency distributions of two bivalves on the California shelf. Within‐species age offsets are ~50–2,000 years forParvilucinaand ~2,000–4,000 years forNuculanaand between‐species offsets are 1,000–4,000 years within the 10‐ to 25‐cm‐thick stratigraphic units. Shells within the top 20–24 cm of the seabed are age‐homogeneous, defining the thickness of the surface completely‐mixed layer (SML), and have strongly right‐skewed age‐frequency distributions, indicating fast shell disintegration. The SML thus coincides with the taphonomic active zone and extends below the redoxcline at ~10 cm. Shells >2,000–3,000 years old occurring within the SML have been exhumed from subsurface shell‐rich units rich where disintegration is negligible (sequestration zone, SZ). Burrowers (callianassid shrimps) penetrate 40–50 cm below the seafloor into this SZ. The millennial offsets within each increment result from the advection of old shells from the SZ, combined with an out‐of‐phase change in species production. Age unmixing reveals thatParvilucinawas abundant during the transgressive phase, rare during the highstand phase, and increased steeply in the twentieth century in response to wastewater.Nuculanawas abundant during the highstand phase and has declined over the past two centuries. This sequestration‐exhumation dynamic accentuates age offsets by allowing both the persistence of shells below the SML and their later admixing with younger shells within the SML. 
    more » « less
  4. Abstract Bioturbation can increase time averaging by downward and upward movements of young and old shells within the entire mixed layer and by accelerating the burial of shells into a sequestration zone (SZ), allowing them to bypass the uppermost taphonomically active zone (TAZ). However, bioturbation can increase shell disintegration concurrently, neutralizing the positive effects of mixing on time averaging. Bioirrigation by oxygenated pore-water promotes carbonate dissolution in the TAZ, and biomixing itself can mill shells weakened by dissolution or microbial maceration, and/or expose them to damage at the sediment–water interface. Here, we fit transition rate matrices to bivalve age–frequency distributions from four sediment cores from the southern California middle shelf (50–75 m) to assess the competing effects of bioturbation on disintegration and time averaging, exploiting a strong gradient in rates of sediment accumulation and bioturbation created by historic wastewater pollution. We find that disintegration covaries positively with mixing at all four sites, in accord with the scenario where bioturbation ultimately fuels carbonate disintegration. Both mixing and disintegration rates decline abruptly at the base of the 20- to 40-cm-thick, age-homogenized surface mixed layer at the three well-bioturbated sites, despite different rates of sediment accumulation. In contrast, mixing and disintegration rates are very low in the upper 25 cm at an effluent site with legacy sediment toxicity, despite recolonization by bioirrigating lucinid bivalves. Assemblages that formed during maximum wastewater emissions vary strongly in time averaging, with millennial scales at the low-sediment accumulation non-effluent sites, a centennial scale at the effluent site where sediment accumulation was high but bioturbation recovered quickly, and a decadal scale at the second high-sedimentation effluent site where bioturbation remained low for decades. Thus, even though disintegration rates covary positively with mixing rates, reducing postmortem shell survival, bioturbation has theneteffect of increasing the time averaging of skeletal remains on this warm-temperate siliciclastic shelf. 
    more » « less
  5. The Holocene, starting approximately 11.7 cal ka, is characterized by distinct periods of warming and cooling. Despite these known climate events, few temperature proxy data exist in the northwestern Atlantic Ocean. One potential record of past water temperatures is preserved in the marine fossil record. Shell growth of ocean quahogs ( Arctica islandica), a long-lived bivalve, can provide records of past environmental conditions. Arctica islandica habitat includes the Mid-Atlantic Bight (MAB), an area rapidly warming as a consequence of climate change. The Cold Pool, a bottom-trapped water mass on the outer continental shelf within the MAB, rarely rises above 15°C. Ocean quahogs inhabiting the MAB are confined to the Cold Pool as a consequence of an upper thermal limit for the species of ~15–16°C. Recently, dead A. islandica shells were discovered outside of the species’ present-day range, suggesting that the Cold Pool once extended further inshore than now observed. Shells collected off the Delmarva Peninsula were radiocarbon-dated to identify the timing of habitation and biogeographic range shifts. Dead shell ages range from 4400 to 60 cal BP, including ages representing four major Holocene cold events. Nearly absent from this record are shells from the intermittent warm periods. Radiocarbon ages indicate that ocean quahogs, contemporaneous with the present MAB populations, were living inshore of their present-day distribution during the past 200 years. This overlap suggests the initiation of a recent biogeographic range shift that occurred as a result of a regression of the Cold Pool following the Little Ice Age. 
    more » « less