Abstract This protocol describes the synthesis of long oligonucleotides (up to 401‐mer), their isolation from complex mixtures using the catching‐by‐polymerization (CBP) method, and the selection of error‐free sequence via cloning followed by Sanger sequencing. Oligo synthesis is achieved under standard automated solid‐phase synthesis conditions with only minor yet critical adjustments using readily available reagents. The CBP method involves tagging the full‐length sequence with a polymerizable tagging phosphoramidite (PTP), co‐polymerizing the sequence into a polymer, washing away failure sequences, and cleaving the full‐length sequence from the polymer. Cloning and sequencing guided selection of error‐free sequence overcome the problems of substitution, deletion, and addition errors that cannot be addressed using any other methods, including CBP. Long oligos are needed in many areas such as protein engineering and synthetic biology. The methods described here are particularly important for projects requiring long oligos containing long repeats or stable higher‐order structures, which are difficult or impossible to produce using any other existing technologies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Long oligo synthesis Support Protocol 1: Synthesis of polymerizable tagging phosphoramidite (PTP) Support Protocol 2: Synthesis of 5′‐O‐Bz phosphoramidite Basic Protocol 2: Catching‐by‐polymerization (CBP) purification Basic Protocol 3: Error‐free sequence selection via cloning and sequencing
more »
« less
Garcinolic Acid Distinguishes Between GACKIX Domains and Modulates Interaction Networks
Abstract Natural products are often uniquely suited to modulate protein‐protein interactions (PPIs) due to their architectural and functional group complexity relative to synthetic molecules. Here we demonstrate that the natural product garcinolic acid allosterically blocks the CBP/p300 KIX PPI network and displays excellent selectivity over related GACKIX motifs. It does so via a strong interaction (KD1 μM) with a non‐canonical binding site containing a structurally dynamic loop in CBP/p300 KIX. Garcinolic acid engages full‐length CBP in the context of the proteome and in doing so effectively inhibits KIX‐dependent transcription in a leukemia model. As the most potent small‐molecule KIX inhibitor yet reported, garcinolic acid represents an important step forward in the therapeutic targeting of CBP/p300.
more »
« less
- Award ID(s):
- 1904071
- PAR ID:
- 10468139
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemBioChem
- Volume:
- 24
- Issue:
- 21
- ISSN:
- 1439-4227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MXenes are a new family of two-dimensional carbides and/or nitrides. Their 2D surfaces are typically terminated by O, OH and/or F atoms. Here we show that Ti3C2Tx—the most studied compound of the MXene family—is a good acid catalyst, thanks to the surface acid functionalities. We demonstrate this by applying Ti3C2Txin the epoxide ring-opening reaction of styrene oxide (SO) and its isomerization in the liquid phase. Modifying the MXene surface changes the catalytic activity and selectivity. By oxidizing the surface, we succeeded in controlling the type and number of acid sites and thereby improving the yield of the mono-alkylated product to >80%. Characterisation studies show that a thin oxide layer, which forms directly on the Ti3C2Txsurface, is essential for catalysing the SO ring-opening. We hypothesize that two kinds of acid sites are responsible for this catalysis: In the MXene, strong acid sites (both Lewis and Brønsted) catalyse both the ring-opening and the isomerization reactions, while in the Mxene–TiO2composite weaker acid sites catalyse only the ring-opening reaction, increasing the selectivity to the mono-alkylated product.more » « less
-
The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3is generally low, and H2SO4is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4and HIOxduring atmospheric particle nucleation. We found that HIOxgreatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3strongly binds with H2SO4in charged clusters so they drive particle nucleation synergistically. Second, HIO2substitutes for NH3, forming strongly bound H2SO4-HIO2acid-base pairs in molecular clusters. Global observations imply that HIOxis enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions.more » « less
-
Abstract Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500Kds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g.enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, andin vitroaffinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation.more » « less
-
Abstract Herbivory is a dominant feeding strategy among animals, yet herbivores are often protein limited. The gut microbiome is hypothesized to help maintain host protein balance by provisioning essential macromolecules, but this has never been tested in wild consumers. Using amino acid carbon (δ13C) and nitrogen (δ15N) isotope analysis, we estimated the proportional contributions of essential amino acids (AAESS) synthesized by gut microbes to five co‐occurring desert rodents representing herbivorous, omnivorous and insectivorous functional groups. We found that herbivorous rodents occupying lower trophic positions (Dipodomysspp.) routed a substantial proportion (~40%–50%) of their AAESSfrom gut microbes, while higher trophic level omnivores (Peromyscusspp.) and insectivores (Onychomys arenicola) obtained most of their AAESS(~58%) from plant‐based energy channels but still received ~20% of their AAESSfrom gut microbes. These findings empirically demonstrate that gut microbes play a key functional role in host protein metabolism in wild animals.more » « less
An official website of the United States government
