skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
While integrated physical and control system co-design has been demonstrated successfully on several engineering system design applications, it has been primarily applied in a deterministic manner without considering uncertainties. An opportunity exists to study non-deterministic co-design strategies, taking into account various uncertainties in an integrated co-design framework. Reliability-based design optimization (RBDO) is one such method that can be used to ensure an optimized system design being obtained that satisfies all reliability constraints considering particular system uncertainties. While significant advancements have been made in co-design and RBDO separately, little is known about methods where reliability-based dynamic system design and control design optimization are considered jointly. In this article, a comparative study of the formulations and algorithms for reliability-based co-design is conducted, where the co-design problem is integrated with the RBDO framework to yield solutions consisting of an optimal system design and the corresponding control trajectory that satisfy all reliability constraints in the presence of parameter uncertainties. The presented study aims to lay the groundwork for the reliability-based co-design problem by providing a comparison of potential design formulations and problem–solving strategies. Specific problem formulations and probability analysis algorithms are compared using two numerical examples. In addition, the practical efficacy of the reliability-based co-design methodology is demonstrated via a horizontal-axis wind turbine structure and control design problem.  more » « less
Award ID(s):
1653118
PAR ID:
10470871
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
142
Issue:
3
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Co-design, or integrated physical and control system design, has been demonstrated successfully for several engineering system design optimization applications, primarily in a deterministic manner. An opportunity exists to study non-deterministic co-design strategies, including incorporation of uncertainty-induced failures, into an integrated co-design framework. Reliability-based design optimization (RBDO) is one such method that can be used to increase the likelihood of having a feasible design that satisfies all reliability constraints. While significant recent advancements have been made in co-design and RBDO separately, limited work has been done where reliability-based dynamic system design and control design optimization are considered jointly. In this paper, the co-design problem is integrated with the RBDO framework to yield a system-optimal design and the corresponding control trajectory, which satisfy all reliability constraints in the presence of parameter variations. Different problem formulations and RBDO algorithms are compared through numerical examples. The design of a horizontal-axis wind turbine (HAWT) supported by a lattice tower (with parameter uncertainties) is presented to demonstrate the applicability of the proposed method. 
    more » « less
  2. The development of lithium-ion battery technology has ensured that battery thermal management systems are an essential component of the battery pack for next-generation energy storage systems. Using dielectric immersion cooling, researchers have demonstrated the ability to attain high heat transfer rates due to the direct contact between cells and the coolant. However, feedback control has not been widely applied to immersion cooling schemes. Furthermore, current research has not considered battery pack plant design when optimizing feedback control. Uncertainties are inherent in the cooling equipment, resulting in temperature and flow rate fluctuations. Hence, it is crucial to systematically consider these uncertainties during cooling system design to improve the performance and reliability of the battery pack. To fill this gap, we established a reliability-based control co-design optimization framework using machine learning for immersion cooled battery packs. We first developed an experimental setup for 21700 battery immersion cooling, and the experiment data were used to build a high-fidelity multiphysics finite element model. The model can precisely represent the electrical and thermal profile of the battery. We then developed surrogate models based on the finite element simulations in order to reduce computational cost. The reliability-based control co-design optimization was employed to find the best plant and control design for the cooling system, in which an outer optimization loop minimized the cooling system cost while an inner loop ensured battery pack reliability. Finally, an optimal cooling system design was obtained and validated, which showed a 90% saving in cooling system energy consumption. 
    more » « less
  3. Abstract This paper presents a new computational framework for the co-optimization and co-control of morphable surface structures using topology optimization and circle-packing algorithms. The proposed approach integrates the design of optimized compliant components and the system-level control of the overall surface morphology. By representing the surface shape using circle packing and leveraging conformal mapping, the framework enables smooth deformation between 2D and 3D shapes while maintaining local geometry and global morphology. The morphing surface design problem is recast as designing circular compliant actuators using level-set topology optimization with displacements and stiffness objectives. The optimized component designs are then mapped back onto the circle packing representation for coordinated control of the surface morphology. This integrated approach ensures compatibility between local and global geometries and enables efficient actuation of the morphable surface. The effectiveness of the proposed framework is demonstrated through numerical examples and physical prototypes, showcasing its ability to design and control complex morphable surfaces with applications in various fields. The co-optimization and co-control capabilities of the framework are verified, highlighting its potential for realizing advanced morphable structures with optimized geometries and coordinated actuation. This integrated approach goes beyond conventional methods by considering both local component geometry and global system morphology and enabling coordinated control of the morphable surface. The general nature of our approach makes it applicable to a wide range of problems involving the design and control of morphable structures with complex, adaptive geometries. 
    more » « less
  4. This article explores various uncertain control co-design (UCCD) problem formulations. While previous work offers formulations that are method-dependent and limited to only a handful of uncertainties (often from one discipline), effective application of UCCD to real-world dynamic systems requires a thorough understanding of uncertainties and how their impact can be captured. Since the first step is defining the UCCD problem of interest, this article aims at addressing some of the limitations of the current literature by identifying possible sources of uncertainties in a general UCCD context and then formalizing ways in which their impact is captured through problem formulation alone (without having to immediately resort to specific solution strategies). We first develop and then discuss a generalized UCCD formulation that can capture uncertainty representations presented in this article. Issues such as the treatment of the objective function, the challenge of the analysis-type equality constraints, and various formulations for inequality constraints are discussed. Then, more specialized problem formulations such as stochastic in expectation, stochastic chance-constrained, probabilistic robust, worst-case robust, fuzzy expected value, and possibilistic chance-constrained UCCD formulations are presented. Key concepts from these formulations, along with insights from closely-related fields, such as robust and stochastic control theory, are discussed, and future research directions are identified. 
    more » « less
  5. Mechanical metamaterials represent an innovative class of artificial structures, distinguished by their extraordinary mechanical characteristics, which are beyond the scope of traditional natural materials. The use of deep generative models has become increasingly popular in the design of metamaterial units. The effectiveness of using deep generative models lies in their capacity to compress complex input data into a simplified, lower-dimensional latent space, while also enabling the creation of novel optimal designs through sampling within this space. However, the design process does not take into account the effect of model uncertainty due to data sparsity or the effect of input data uncertainty due to inherent randomness in the data. This might lead to the generation of undesirable structures with high sensitivity to the uncertainties in the system. To address this issue, a novel uncertainty-aware deep learning framework-based robust design approach is proposed for the design of metamaterial units with optimal target properties. The proposed approach utilizes the probabilistic nature of the deep learning framework and quantifies both aleatoric and epistemic uncertainties associated with surrogate-based design optimization. We demonstrate that the proposed design approach is capable of designing high-performance metamaterial units with high reliability. To showcase the effectiveness of the proposed design approach, a single-objective design optimization problem and a multi-objective design optimization problem are presented. The optimal robust designs obtained are validated by comparing them to the designs obtained from the topology optimization method as well as the designs obtained from a deterministic deep learning framework-based design optimization where none of the uncertainties in the system are explicitly considered. 
    more » « less