skip to main content


Title: Profiling wind LiDAR measurements to quantify blockage for onshore wind turbines
Abstract

Flow modifications induced by wind turbine rotors on the incoming atmospheric boundary layer (ABL), such as blockage and speedups, can be important factors affecting the power performance and annual energy production (AEP) of a wind farm. Further, these rotor‐induced effects on the incoming ABL can vary significantly with the characteristics of the incoming wind, such as wind shear, veer, and turbulence intensity, and turbine operative conditions. To better characterize the complex flow physics underpinning the interaction between turbine rotors and the ABL, a field campaign was performed by deploying profiling wind LiDARs both before and after the construction of an onshore wind turbine array. Considering that the magnitude of these rotor‐induced flow modifications represents a small percentage of the incoming wind speed ( ), high accuracy needs to be achieved for the analysis of the experimental data and generation of flow predictions. Further, flow distortions induced by the site topography and effects of the local climatology need to be quantified and differentiated from those induced by wind turbine rotors. To this aim, a suite of statistical and machine learning models, such as k‐means cluster analysis coupled with random forest predictions, are used to quantify and predict flow modifications for different wind and atmospheric conditions. The experimental results show that wind velocity reductions of up to 3% can be observed at an upstream distance of 1.5 rotor diameter from the leading wind turbine rotor, with more significant effects occurring for larger positive wind shear. For more complex wind conditions, such as negative shear and low‐level jet, the rotor induction becomes highly complex entailing either velocity reductions (down to 9%) below hub height and velocity increases (up to 3%) above hub height. The effects of the rotor induction on the incoming wind velocity field seem to be already roughly negligible at an upstream distance of three rotor diameters. The results from this field experiment will inform models to simulate wind‐turbine and wind‐farm operations with improved accuracy for flow predictions in the proximity of the rotor area, which will be instrumental for more accurate quantification of wind farm blockage and relative effects on AEP.

 
more » « less
Award ID(s):
1916776
NSF-PAR ID:
10470932
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Wind Energy
ISSN:
1095-4244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To maximize the profitability of wind power plants, wind farms are often characterized by high wind turbine density leading to operations with reduced turbine spacing. As a consequence, the overall wind farm power capture is hindered by complex flow features associated with flow modifications induced by the various wind turbine rotors. In addition to the generation of wakes, the velocity of the incoming wind field can reduce due to the increased pressure in the proximity of a single turbine rotor (named induction); a similar effect occurs at the wind-farm level (global blockage), which can have a noticeable impact on power production. On the other hand, intra-wind-farm regions featuring increased velocity compared to the freestream (speedups) have also been observed, which can be a source for a potential power boost. To quantify these rotor-induced effects on the incoming wind velocity field, three profiling LiDARs and one scanning wind LiDAR were deployed both before and after the construction of an onshore wind turbine array. The different wind conditions are classified according to the ambient turbulence intensity and streamwise/spanwise spacing among wind turbines. The analysis of the mean velocity field reveals enhanced induction and speedup under stably stratified atmospheric conditions. Furthermore, a reduced horizontal area between adjacent turbines has a small impact on the induction zone but increases significantly the speedup between adjacent rotors.

     
    more » « less
  2. Abstract A field experiment was conducted to investigate the effects of the thrust force induced by utility-scale wind turbines on the incoming wind field. Five wind profiling LiDARs and a scanning Doppler pulsed wind LiDAR were deployed in the proximity of a row of four wind turbines located over relatively flat terrain, both before and after the construction of the wind farm. The analysis of the LiDAR data collected during the pre-construction phase enables quantifying the wind map of the site, which is then leveraged to correct the post-construction LiDAR data and isolate rotor-induced effects on the incoming wind field. The analysis of the profiling LiDAR data allows for the identification of the induction zone upstream of the turbine rotors, with an increasing velocity deficit moving from the top tip towards the bottom tip of the rotor. The largest wind speed reduction (about 5%) is observed for convective conditions and incoming hub-height wind speed between cut-in and rated wind speeds. The scanning LiDAR data indicate the presence of speedup regions within the gaps between adjacent turbine rotors. Speedup increases with reducing the transverse distance between the rotors, atmospheric instability (maximum 15%), while a longer streamwise extent of the speedup region is observed under stable atmospheric conditions. 
    more » « less
  3. null (Ed.)
    Abstract. Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power capture, and, in turn, annual energy production for an entire wind farm with very low computational costs compared to higher-fidelity numerical tools. However, wake and power predictions obtained with engineering wake models can be insufficiently accurate for wind farm optimization problems due to the ad hoc tuning of the model parameters, which are typically strongly dependent on the characteristics of the site and power plant under investigation. In this paper, lidar measurements collected for individual turbine wakes evolving over a flat terrain are leveraged to perform optimal tuning of the parameters of four widely used engineering wake models. The average wake velocity fields, used as a reference for the optimization problem, are obtained through a cluster analysis of lidar measurements performed under a broad range of turbine operative conditions, namely rotor thrust coefficients, and incoming wind characteristics, namely turbulence intensity at hub height. The sensitivity analysis of the optimally tuned model parameters and the respective physical interpretation are presented. The performance of the optimally tuned engineering wake models is discussed, while the results suggest that the optimally tuned Bastankhah and Ainslie wake models provide very good predictions of wind turbine wakes. Specifically, the Bastankhah wake model should be tuned only for the far-wake region, namely where the wake velocity field can be well approximated with a Gaussian profile in the radial direction. In contrast, the Ainslie model provides the advantage of using as input an arbitrary near-wake velocity profile, which can be obtained through other wake models, higher-fidelity tools, or experimental data. The good prediction capabilities of the Ainslie model indicate that the mixing-length model is a simple yet efficient turbulence closure to capture effects of incoming wind and wake-generated turbulence on the wake downstream evolution and predictions of turbine power yield. 
    more » « less
  4. Abstract

    Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading‐edge (LE) erosion of wind turbine blades is important to design cost‐effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) thermographic imaging of turbine blades, as well as meteorological and SCADA data. The average AEP loss of turbines with LE erosion is estimated from SCADA and meteorological data to be between 3% and 8% of the expected power capture. The impact of LE erosion on the average power capture of the turbines is found to be higher at lower hub‐height wind speeds (peak around 50% of the turbine rated wind speed) and at lower turbulence intensity of the incoming wind associated with stable atmospheric conditions. The effect of LE erosion is investigated with IR thermography to identify the laminar to turbulent transition (LTT) position over the airfoils of the turbine blades. Reduction in the laminar flow region of about 85% and 87% on average in the suction and pressure sides, respectively, is observed for the airfoils of the investigated turbines with LE erosion. Using the observed LTT locations over the airfoils and the geometry of the blade, an average AEP loss of about 3.7% is calculated with blade element momentum simulations, which is found to be comparable with the magnitude of AEP loss estimated through the SCADA data.

     
    more » « less
  5. With the increase in the use of small uncrewed aircraft systems (UAS) there is a growing need for real-time weather forecasting to improve the safety of low-altitude aircraft operations. This will require integration of measurements with autonomous systems since current available sampling lack sufficient resolution within the atmospheric boundary layer (ABL). Thus, the current work aims to assess the ability to measure wind speeds from a quad-copter UAS and compare the performance with that of a fixed mast. Two laboratory tests were initially performed to assess the spatial variation in the vertically induced flow from the rotors. The horizontal distribution above the rotors was examined in a water tunnel at speeds and rotation rates to simulate nominally full throttle with a relative air speed of 0 or 8 m/s. These results showed that the sensor should be placed between rotor pairs. The vertical distribution was examined from a single rotor test in a large chamber, which suggested that at full throttle the sensor should be about 400 mm above the rotor plane. Field testing was then performed with the sensor positioned in between both pairs of rotors at 406, 508, and 610 mm above the rotor plane. The mean velocity over the given period was within 5.5% of the that measured from a fixed mast over the same period. The variation between the UAS and mast sensors were better correlated with the local mean shear than separation distance, which suggests height mismatch could be the source of error. The fluctuating velocity was quantified with the comparison of higher order statistics as well as the power spectral density, which the mast and UAS spectra were in good agreement regardless of the separation distance. This implies that for the current configuration a separation distance of 5.3 rotor diameters was sufficient to minimize the influence of the rotors. 
    more » « less