skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biomechanical Evaluation of Case Hook Designs for Selector Use in Distribution Centers
Case hooks are tools used in distribution centers by selectors to help them reach and pull products located on the back half of a pallet. This study investigated the postural, electromyographic, and usability responses as 4 handle and 3 tip types were used to pull cases forward on a pallet. The data suggest the pistol grip may be most biomechanically advantageous. With the pistol grip, the rake and conventional tips worked well and had good usability scores.  more » « less
Award ID(s):
1916651 1822124
PAR ID:
10472494
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Sage
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
ISSN:
2169-5067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In eukaryotes, the ubiquitin‐proteasome system is responsible for intracellular protein degradation. Proteins tagged with ubiquitin are recognized by ubiquitin receptors on the 19S regulatory particle (RP) of the 26S proteasome, unfolded, routed through the translocation channel of the RP, and are then degraded in the 20S core particle (CP). Aromatic paddles on the pore‐1 loops of the RP's Rpt subunits grip the substrate and pull folded domains into the channel, thereby unfolding them. The sequence that the aromatic paddles grip while unfolding a substrate is therefore expected to influence the extent of unfolding, and low complexity sequences have been shown to interfere with grip. However, the detailed spatial requirements for grip while unfolding proteins, particularly from the N‐terminus, remain unknown. We determined how the location of glycine‐rich tracts relative to a folded domain impairs unfolding. We find that, in contrast to a previous report, inserting glycine‐rich sequences closer to the folded domain reduced unfolding ability more than positioning them further away. Locations that have the biggest effect on unfolding map onto the regions where the aromatic paddles are predicted to interact with the substrate. Effects on unfolding from locations up to 67 amino acids away from the folded domain suggest that there are additional interactions between the substrate and the proteasome beyond the aromatic paddles that facilitate translocation of the substrate. In sum, this study deepens understanding of the mechanical interactions within the substrate channel by mapping the spacing of interactions between the substrate and the proteasome during unfolding. 
    more » « less
  2. Powerful digital grasping is essential for primates navigating arboreal environments and is often regarded as a defining characteristic of the order. However,in vivodata on primate grip strength are limited. In this study, we collected grasping data from the hands and feet of eleven strepsirrhine species to assess how ecomorphological variables—such as autopodial shape, laterality, body mass and locomotor mode—influence grasping performance. Additionally, we derived anatomical estimates of grip force from cadaveric material to determine whetherin vivoandex vivogrip strength measurements follow similar scaling relationships and how they correlate. Results show that bothin vivoand anatomical grip strength scale positively with body mass, though anatomical measures may overestimatein vivoperformance. Species with wider autopodia tend to exhibit higher grip forces, and forelimb grip forces exceed those of the hindlimbs. No lateralization in grip strength was observed. While strepsirrhine grip forces relative to their body weight are comparable to those of other primates and slightly exceed those of humans, they are not exceptional compared to other arboreal mammals or birds, suggesting that claims of extraordinary primate grasping abilities require further investigation. 
    more » « less
  3. null (Ed.)
    When manipulating objects, we use kinesthetic and tactile information to form an internal representation of their mechanical properties for cognitive perception and for preventing their slippage using predictive control of grip force. A major challenge in understanding the dissociable contributions of tactile and kinesthetic information to perception and action is the natural coupling between them. Unlike previous studies that addressed this question either by focusing on impaired sensory processing in patients or using local anesthesia, we used a behavioral study with a programmable mechatronic device that stretches the skin of the fingertips to address this issue in the intact sensorimotor system. We found that artificial skin-stretch increases the predictive grip force modulation in anticipation of the load force. Moreover, the stretch causes an immediate illusion of touching a harder object that does not depend on the gradual development of the predictive modulation of grip force. 
    more » « less
  4. This paper proposes the risk-limiting unit commitment (RLUC) as the operational method to address the uncertainties in the smart grid with intelligent periphery (GRIP). Three key requirements are identified for the RLUC in GRIP. The first one requires the RLUC to be modeled as a multi-stage multi-period unit commitment problem considering power trades, operational constraints, and operational risks. The second one requires the RLUC considering the conditional prediction to achieve a globally optimal solution. It is addressed by using conditional probability in a scenario-based form. The last one requires the risk index in the RLUC to be both valid and computationally friendly, and it is tackled by the utilization of a coherent risk index and the mathematical proof of a risk chain theorem. Finally, the comprehensive RLUC in GRIP satisfying all the three requirements is solved by an equivalent transformation into a mixed integer piecewise linear programming problem. Case studies on a 9-bus system, a realistic provincial power system, and a regional power grid in China demonstrate the advantages of the proposed RLUC in GRIP. 
    more » « less
  5. Abstract The semi‐aquatic North American river otter (Lontra canadensis) has the unique challenge of navigating slippery algae‐coated rocks. Unlike other river otter species, each rear paw of the North American river otter has a series of soft, circular, and keratinized plantar pads similar to the felt pads on the boots of fly fishermen. Surrounding these soft pads is a textured epidermal layer. In this combined experimental and numerical study, we investigate the influence of the plantar pads and surrounding skin on the otter's grip. We filmed an otter walking and performed materials testing and histology on preserved otter paws. We present experiments and numerical modeling of how the otter paw may help evacuate water when contacting the river bed. We hope this study will draw interest into natural amphibious grip mechanisms for use in sports and the military. 
    more » « less