- Award ID(s):
- 2009342
- NSF-PAR ID:
- 10472717
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Engineering proceedings
- ISSN:
- 2673-4591
- Page Range / eLocation ID:
- 38
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we showcase a framework for cooperative mixed traffic platooning that allows the platooning vehicles to realize multiple benefits from using vehicle-to- everything (V2X) communications and advanced controls on urban arterial roads. A mixed traffic platoon, in general, can be formulated by a lead and ego connected automated vehicles (CAVs) with one or more unconnected human-driven vehicles (UHVs) in between. As this platoon approaches an intersection, the lead vehicle uses signal phase and timing (SPaT) messages from the connected intersection to optimize its trajectory for travel time and energy efficiency as it passes through the intersection. These benefits carry over to the UHVs and the ego vehicle as they follow the lead vehicle. The ego vehicle then uses information from the lead vehicle received through basic safety messages (BSMs) to further optimize its safety, driving comfort, and energy consumption. This is accomplished by the recently designed cooperative adaptive cruise control with unconnected vehicles (CACCu). The performance benefits of our framework are proven and demonstrated by simulations using real-world platooning data from the CACC Field Operation Test (FOT) Dataset from the Netherlands.more » « less
-
Abstract Rapid advances in vehicle automation and communication technologies enable connected autonomous vehicles (CAVs) to cross intersections cooperatively, which could significantly improve traffic throughput and safety at intersections. Virtual platooning, designed upon car‐following behavior, is one of the promising control methods to promote cooperative intersection crossing of CAVs. Nevertheless, demand variation raises safety and stability concerns when CAVs adopt a virtual platooning control approach. Along this line, this study proposes an adaptive vehicle control method to facilitate the formation of a virtual platoon and the cooperative crossing of CAVs, factoring demand variations at an isolated intersection. This study derives the stability conditions of virtual CAV platoons depending on the time‐varying traffic demand. Based on the derived stability conditions, an optimization model is proposed to adaptively control CAVs dynamics by balancing approaching traffic mobility and safety to enhance the reliability of cooperative crossing at intersections. The simulation results show that, compared to the nonadaptive control, our proposed method can increase the intersection throughput by 18.2%. Also, time‐to‐collision results highlight the advantages of the proposed adaptive control in securing traffic safety.
-
In this paper, we investigated the performance of cooperative adaptive cruise control (CACC) algorithms in mixed traffic environments featuring connected automated vehicles (CAVs) and unconnected vehicles. For CAVs, we tested the recently proposed linear feedback control approach (Linear- CACCu) and adaptive model predictive control approach (A- MPC-CACCu) which have been tailored to extend CACC to mixed traffic environments. In contrast to most literature where CACC design and evaluation are performed on freeways, we focused on urban arterial roads using the CACC Field Operation Test Dataset from the Netherlands. We compared the performances of Linear-CACCu and A-MPC-CACCu to regular adaptive cruise control (ACC), where automated vehicles do not rely on connectivity, as well as human drivers. Performance comparison was done in terms of ego vehicle’s spacing error, acceleration, and energy consumption which relate to safety, driving comfort, and energy efficiency, respectively. Simulation results showed that CACCu algorithms significantly outper- formed the ACC and human drivers in these metrics. Moreover, we found that the fluctuations of the lead vehicle’s behavior due to changes in traffic signal phase have a significant impact on which CACCu is optimal (i.e., A-MPC-CACCu or Linear- CACCu). Thus, the CACC mode could be switched based on the expectation of traffic signal phase changes to assure better performance.more » « less
-
Cooperative adaptive cruise control (CACC) is one of the main features of connected and autonomous vehicles (CAVs), which uses connectivity to improve the efficiency of adaptive cruise control (ACC). The addition of reliable communication systems to ACC reduces fuel consumption, maximizes road capacity, and ensures traffic safety. However, the performance, stability, and safety of CACC could be affected by the transmission of outdated data caused by communication delays. This paper proposes a Lyapunov-based nonlinear controller to mitigate the impact of time-varying delays in the communication channel of CACC. This paper uses Lyapunov–Krasovskii functionals in the stability analysis to ensure semi-global uniformly ultimately bounded tracking. The efficaciousness of the proposed CACC algorithm is demonstrated in simulation and through experimental implementation.
-
null (Ed.)Autonomous vehicle-following systems, including Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC), improve safety, efficiency, and string stability for a vehicle (the ego vehicle) following its leading vehicle. The ego vehicle senses or receives information, such as the position, velocity, acceleration, or even intention, of the leading vehicle and controls its own behavior. However, it has been shown that sensors and wireless channels are vulnerable to security attacks, and attackers can modify data sensed from sensors or received from other vehicles. To address this problem, in this paper, we design three types of stealthy attacks on ACC or CACC inputs, where the stealthy attacks can deceive a rule-based detection approach and impede system properties (collision-freeness and vehicle-following distance). We then develop two deep-learning models, a predictor-based model and an encoder-decoder-based model to detect the attacks, where the two models do not need attacker models for training. The experimental results demonstrate the respective strengths of different models and lead to a methodology for the design of learning-based intrusion detection approaches.more » « less