skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DESI z ≳ 5 Quasar Survey. I. A First Sample of 400 New Quasars at z ∼ 4.7–6.6
Abstract We report the first results of a high-redshift (z≳ 5) quasar survey using the Dark Energy Spectroscopic Instrument (DESI). As a DESI secondary target program, this survey is designed to carry out a systematic search and investigation of quasars at 4.8 <z< 6.8. The target selection is based on the DESI Legacy Imaging Surveys (the Legacy Surveys) DR9 photometry, combined with the Pan-STARRS1 data andJ-band photometry from public surveys. A first quasar sample has been constructed from the DESI Survey Validation 3 (SV3) and first-year observations until 2022 May. This sample includes more than 400 new quasars at redshift 4.7 ≤z< 6.6, down to 21.5 magnitude (AB) in thezband, discovered from 35% of the entire target sample. Remarkably, there are 220 new quasars identified atz≥ 5, more than one-third of existing quasars previously published at this redshift. The observations so far result in an average success rate of 23% atz> 4.7. The current spectral data set has already allowed analysis of interesting individual objects (e.g., quasars with damped Lyαabsorbers and broad absorption line features), and statistical analysis will follow the survey’s completion. A set of science projects will be carried out leveraging this program, including quasar luminosity function, quasar clustering, intergalactic medium, quasar spectral properties, intervening absorbers, and properties of early supermassive black holes. Additionally, a sample of 38 new quasars atz∼ 3.8–5.7 discovered from a pilot survey in the DESI SV1 is also published in this paper.  more » « less
Award ID(s):
1908284
PAR ID:
10472900
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
269
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 27
Size(s):
Article No. 27
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present the results of a new, deeper, and complete search for high-redshift 6.5 < z < 9.3 quasars over 977 deg2 of the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. This exploits a new list-driven data set providing photometry in all bands Z, Y, J, H, Ks, for all sources detected by VIKING in J. We use the Bayesian model comparison (BMC) selection method of Mortlock et al., producing a ranked list of just 21 candidates. The sources ranked 1, 2, 3, and 5 are the four known z > 6.5 quasars in this field. Additional observations of the other 17 candidates, primarily DESI Legacy Survey photometry and ESO FORS2 spectroscopy, confirm that none is a quasar. This is the first complete sample from the VIKING survey, and we provide the computed selection function. We include a detailed comparison of the BMC method against two other selection methods: colour cuts and minimum-χ2 SED fitting. We find that: (i) BMC produces eight times fewer false positives than colour cuts, while also reaching 0.3 mag deeper, (ii) the minimum-χ2 SED-fitting method is extremely efficient but reaches 0.7 mag less deep than the BMC method, and selects only one of the four known quasars. We show that BMC candidates, rejected because their photometric SEDs have high χ2 values, include bright examples of galaxies with very strong [O iii] λλ4959,5007 emission in the Y band, identified in fainter surveys by Matsuoka et al. This is a potential contaminant population in Euclid searches for faint z > 7 quasars, not previously accounted for, and that requires better characterization. 
    more » « less
  2. Abstract The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70Myr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities. 
    more » « less
  3. Abstract About 70 luminous quasars discovered atz> 6.5 are strongly biased toward the bright end, thus not providing a comprehensive view of quasar abundance beyond the cosmic dawn. We present the predicted results of the Roman/Rubin high-redshift quasar survey, yielding 3 times more, 2–4 mag deeper quasar samples, probing high-redshift quasars across a broad range of luminosities, especially faint quasars atLbol∼ 1010LorM1450∼ −22, which are currently poorly explored. We include high-zquasars, galactic dwarfs, and low-zcompact galaxies with similar colors as quasar candidates. We create mock catalogs based on population models to evaluate selection completeness and efficiency. We utilize the classical color dropout method in thezandYbands to select primary quasar candidates, followed up with the Bayesian selection method to identify quasars. We show that overall selection completeness >80% and efficiency ∼10% at 6.5 <z< 9, with 180 quasars atz> 6.5, 20 atz> 7.5, and 2 atz> 8.5. The quasar yields depend sensitively on the assumed quasar luminosity shape and redshift evolution. Brown dwarf rejection through proper motion up to 50% can be made for stars brighter than 25 mag, low-zgalaxies dominate at fainter magnitude. Our results show that Roman/Rubin are able to discover a statistical sample of the earliest and faintest quasars in the Universe. The new valuable data sets are worth follow-up studies with JWST and Extremely Large Telescopes to determine the quasar luminosity function faint end slope and constraint the supermassive black holes growth in the early Universe. 
    more » « less
  4. Abstract Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. Atz< 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg2. In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target anr< 19.5 mag limited sample (BGS Bright), a fainter 19.5 <r< 20.175 color-selected sample (BGS Faint), and a smaller low-zquasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements atz< 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g.,N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter. 
    more » « less
  5. ABSTRACT We introduce a probabilistic approach to select 6 ≤ $$z$$ ≤ 8 quasar candidates for spectroscopic follow-up, which is based on density estimation in the high-dimensional space inhabited by the optical and near-infrared photometry. Densities are modelled as Gaussian mixtures with principled accounting of errors using the extreme deconvolution (XD) technique, generalizing an approach successfully used to select lower redshift ($$z$$ ≤ 3) quasars. We train the probability density of contaminants on 1902 071 7-d flux measurements from the 1076 deg2 overlapping area from the Dark Energy Camera Legacy Survey (DECaLS) ($$z$$), VIKING (YJHKs), and unWISE (W1W2) imaging surveys, after requiring they dropout of DECaLS g and r, whereas the distribution of high-$$z$$ quasars are trained on synthetic model photometry. Extensive simulations based on these density distributions and current estimates of the quasar luminosity function indicate that this method achieves a completeness of $$\ge 56{{\ \rm per\ cent}}$$ and an efficiency of $$\ge 5{{\ \rm per\ cent}}$$ for selecting quasars at 6 < $$z$$ < 8 with JAB < 21.5. Among the classified sources are 8 known 6 < $$z$$ < 7 quasars, of which 2/8 are selected suggesting a completeness $$\simeq 25{{\ \rm per\ cent}}$$, whereas classifying the 6 known (JAB < 21.5) quasars at $$z$$ > 7 from the entire sky, we select 5/6 or a completeness of $$\simeq 80{{\ \rm per\ cent}}$$. The failure to select the majority of 6 < $$z$$ < 7 quasars arises because our quasar density model is based on an empirical quasar spectral energy distribution model that underestimates the scatter in the distribution of fluxes. This new approach to quasar selection paves the way for efficient spectroscopic follow-up of Euclid quasar candidates with ground-based telescopes and James Webb Space Telescope. 
    more » « less