skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting the N ( N  + 1)/2‐site s ‐type Gaussian charge model for permutationally invariant polynomial fitting of global molecular tensor surfaces
Abstract The exact expressions for the dipole, quadrupole, and octupoles of a collection ofNpoint charges involve summations of corresponding tensors over theNsites weighted by their charge magnitudes. When the point charges are atoms (in a molecule) theN‐site formula is an approximation, and one must integrate over the electron density to recover the exact multipoles. In the present work we revisit theN(N + 1)/2‐site point charge density model of Hall (Chem. Phys. Lett.6, 501, 1973) for the purpose of fitting ab initio derived multipole moment hypersurfaces using permutationally invariant polynomials (PIP). We examine new approaches in PIP‐fitting procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS, QMS, OMS and PTS, respectively) for a non‐polar CCl4and a polar CHCl3and show that compared to the primitiveN‐site model theN(N + 1)/2‐site model appreciably improves the relative RMSE of the DMS and does much more substantially so, by an order of magnitude, for the corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential energies up to 18 000 cm−1above the global minima, generated by molecular dynamics simulations at the DFT B3LYP/aug‐cc‐pVDZ level of theory.  more » « less
Award ID(s):
1855583
PAR ID:
10473172
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
International Journal of Quantum Chemistry
Volume:
123
Issue:
11
ISSN:
0020-7608
Subject(s) / Keyword(s):
permutationally invariant polynomials, polarizability, fitting global surfaces
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cadet, Jean (Ed.)
    Abstract A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+–O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+–Iand CHI2+–Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+–O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products. 
    more » « less
  2. The title compound C23H23N2Te+·PF6, is a monoclinic polymorph of the previously reported triclinic structure [Calitreeet al.(2007).Organometallics,26, 6248–6257]. In the crystal, parallel offset π–π stacking [shortest centroid–centroid separation = 3.9620 (9) Å] and ionic interactions help to establish the packing. 
    more » « less
  3. Abstract The rotational barrier about the CN carbamate bond ofN‐(4‐hydroxybutyl)‐N‐(2,2,2‐trifluoroethyl)tert‐butyl carbamate1was determined by variable temperature (VT)13C and19F NMR spectroscopy. The −CH2CF3 appendage reports on rotational isomerism and allows for the observation of separate signals for the E‐ and Z‐ensembles at low temperature. The activation barrier for E/Z‐isomerization was quantified using Eyring‐Polanyi theory which requires the measurements of the maximum difference in Larmor frequency Δνmax and the convergence temperature Tc. Both Δνmax and Tc were interpolated by analyzing sigmoidal functions fitted to data describing signal separation and the quality of the superposition of the E‐ and Z‐signals, respectively. Methods for generating the quality‐of‐fit parameters for Lorentzian line shape analysis are discussed. Our best experimental value for the rotational barrier ΔGc(1)=15.65±0.13 kcal/mol is compared to results of a higher level ab initio study of the modelN‐ethyl‐N‐(2,2,2‐trifluoroethyl) methyl carbamate. 
    more » « less
  4. Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2. 
    more » « less
  5. In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by theN,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5= 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer. 
    more » « less