Abstract Double-network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft-wet materials. Current knowledge of DN gels from synthesis methods to toughening mechanisms almost exclusively comes from chemically-linked DN hydrogels by experiments. Molecular modeling and simulations of inhomogeneous DN structure in hydrogels have proved to be extremely challenging. Herein, we developed a new multiscale simulation platform to computationally investigate the early fracture of physically-chemically linked agar/polyacrylamide (agar/PAM) DN hydrogels at a long timescale. A “random walk reactive polymerization” (RWRP) was developed to mimic a radical polymerization process, which enables to construct a physically-chemically linked agar/PAM DN hydrogel from monomers, while conventional and steered MD simulations were conducted to examine the structural-dependent energy dissipation and fracture behaviors at the relax and deformation states. Collective simulation results revealed that energy dissipation of agar/PAM hydrogels was attributed to a combination of the pulling out of agar chains from the DNs, the disruption of massive hydrogen bonds between and within DN structures, and the strong association of water molecules with both networks, thus explaining a different mechanical enhancement of agar/PAM hydrogels. This computational work provided atomic details of network structure, dynamics, solvation, and interactions of a hybrid DN hydrogel, and a different structural-dependent energy dissipation mode and fracture behavior of a hybrid DN hydrogel, which help to design tough hydrogels with new network structures and efficient energy dissipation modes. Additionally, the RWRP algorithm can be generally applied to construct the radical polymerization-produced hydrogels, elastomers, and polymers. 
                        more » 
                        « less   
                    
                            
                            Development of a radical polymerization algorithm for molecular dynamics simulations of antifreezing hydrogels with double-network structures
                        
                    
    
            Abstract The development and understanding of antifreezing hydrogels are crucial both in principle and practice for the design and delivery of new materials. The current antifreezing mechanisms in hydrogels are almost exclusively derived from their incorporation of antifreezing additives, rather than from the inherent properties of the polymers themselves. Moreover, developing a computational model for the independent yet interconnected double-network (DN) structures in hydrogels has proven to be an exceptionally difficult task. Here, we develop a multiscale simulation platform, integrating ‘random walk reactive polymerization’ (RWRP) with molecular dynamics (MD) simulations, to computationally construct a physically-chemically linked PVA/PHEAA DN hydrogels from monomers that mimic a radical polymerization and to investigate water structures, dynamics, and interactions confined in PVA/PHEAA hydrogels with various water contents and temperatures, aiming to uncover antifreezing mechanism at atomic levels. Collective simulation results indicate that the antifreezing property of PVA/PHEAA hydrogels arises from a combination of intrinsic, strong water-binding networks and crosslinkers and tightly crosslinked and interpenetrating double-network structures, both of which enhance polymer-water interactions for competitively inhibiting ice nucleation and growth. These computational findings provide atomic-level insights into the interplay between polymers and water molecules in hydrogels, which may determine their resistance to freezing. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2311985
- PAR ID:
- 10473450
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Charged double network (DN) hydrogels are widely studied for their desirable mechanical strength and tunable properties. In this work, the influence of polymer concentration on microstructure and properties of agarose/polyacrylic acid DN hydrogels is studied. Agarose, the first network, is a brittle biopolymer, while polyacrylic acid (PAAc) is a weak polyelectrolyte. The microstructure, visualized in liquid environment, displays an agarose scaffold coated and interconnected by PAAc, deviating from the common assumption of an entangled double network. Importantly, the charging of PAAc in the hydrogel is regulated not only by the pH and weak polyelectrolyte effects, but also by the restricted swelling of the double network, and hence, it is an inherent regulation mechanism of charged hydrogels. The interactions between the hydrogel and the ionic environment induce microstructural changes and charging of the double network, impacting surface properties such as topography, stiffness, and adhesion, which are spatially resolved by liquid‐environment atomic force microscopy. The responsiveness of the DN hydrogels significantly depends on both polymer concentrations and ion concentrations. These findings provide insights into the responsive behavior of double network hydrogels and reveal universal mechanisms for charged hydrogels, which can guide the future development of functional soft materials.more » « less
- 
            Antifreezing hydrogels are essential for materials design and practical applications, but their development and understanding have been challenging due to their high-water content. Current antifreezing hydrogels typically rely on organic solvents or the addition of antifreezing agents. In this study, we present a novel crosslinking strategy to fabricate antifreezing hydrogels without the need for additional antifreezing agents. We introduce a new crosslinker, PEGn-EGINA, which combines highly hydrophilic EGINA with polyethylene glycol (PEG) of varying molecular weights. Utilizing PEGn-EGINA as the crosslinker, we synthesize Agar/Polyacrylamide (Agar/PAAm) double-network hydrogels, alongside conventional MBAA-crosslinked hydrogels for comparison. The resulting PEGn-EGINA-crosslinked hydrogels exhibit inherent antifreezing properties and retain their mechanical integrity even at subzero temperatures for extended periods. Molecular dynamics (MD) simulations further reveal that the antifreezing behavior observed in the PEGn-EGINA-crosslinked hydrogels can be attributed to their highly hydrophilic and tightly crosslinked double-network structures. These structures enable strong bindings between water and the hydrogel network, thus effectively preventing the formation of ice crystals within the hydrogels. Notably, PEGn-EGINA-crosslinked hydrogels not only demonstrate superior mechanical performance compared to MBAA-crosslinked hydrogels, but also maintain their mechanical properties even in frozen conditions, making them suitable for a wide range of applications. This study presents a simple yet effective design concept for highlighting the role of novel crosslinker in enhancing antifreezing and mechanical properties, showcasing their potential for various applications that require both antifreezing capabilities and robust mechanical performance.more » « less
- 
            The double‐network (DN) concept, initially applied to hydrogels, has been adapted to elastomers, resulting in materials that combine exceptional toughness with tunable elasticity. This article delves into the constitutive and fracture behaviors of DN elastomers, elucidating the pivotal role of prestretch and composition in tailoring their properties. An incompressible hyperelastic model is employed to predict the stress–strain behavior and energy release rate of a DN elastomer, focusing on how the interactions between the two networks influence its overall material properties. The influence of prestretch and composition on increasing the stiffness and energy release rate of a DN elastomer is analytically determined. The analytical predictions are validated experimentally through comprehensive mechanical and fracture testing using a DN elastomer fabricated by a two‐step crosslinking process to decouple the prestretch and composition. The results show that manipulating these processing parameters can finely tune the mechanical responses of DN elastomers, optimizing them for specific applications. The findings provide new insights into the mechanics of DN elastomers.more » « less
- 
            AbstractPolyvinyl alcohol (PVA) is a water-soluble synthetic polymer that can be used to make hydrogels for biomedical applications as well as biodegradable bags and films; however, compared to other plastics currently used for containers, it lacks mechanical strength, thermal stability, and can easily absorb water from humid environments. Although mechanical improvement has been observed by blending PVA with collagen in a hybrid hydrogel, there is a lack of fundamental understanding of the molecular mechanism, and it is not clear whether the improvement is limited to a hydrated state. Here, using classical molecular dynamics simulations based on fully atomistic models, we develop the equilibrated molecular structure of PVA with collagen and characterize its mechanics. We show that by interacting with a collagen molecule, PVA is equilibrated to a more ordered structure with each residue interacting with the near neighbors by forming more hydrogen bonds locally, making the structure stiffer than pure PVA. The structure shows higher thermal stability before melting, as well as higher rigidity in water. Our results provide the mechanism of the mechanical advantages of hybrid PVA-collagen polymer. The study demonstrates that the structure and mechanics of a synthetic polymer can be tuned by a tiny amount of a natural polymer at the molecular interface. Moreover, it may shed light on identifying a way to improve the mechanics of biodegradable polymer materials without adding much cost, which is crucial for environmental safety. Impact statementBlending natural and synthetic polymers (e.g., polyvinyl alcohol [PVA] and collagen in a hybrid hydrogel) has shown advantages in polymer mechanics, but there is a lack of fundamental understanding. Using molecular dynamics (MD) simulations based on fully atomistic models, we develop the equilibrated structure of the PVA with collagen and characterize its mechanics. We show that by interacting with a collagen molecule, PVA is equilibrated to a more ordered structure with each residue interacting with the near neighbors by forming more H-bonds locally and the structure is stiffer than pure PVA. Moreover, the structure shows a higher thermal stability before the melting point of PVA, as well as higher rigidity in water. Our results demonstrate that the structure and mechanics of a synthetic polymer can be tuned by a tiny amount of a natural polymer at the molecular interface. It provides the mechanism of the mechanical advantages as experimentally observed. This study paves the way for the multiscale modeling and mechanical design of the hybrid polymer material. It sheds light on identifying a way to improve the mechanics of biodegradable materials without adding much cost for both material functionality and environmental safety. Graphical abstractmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
