skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pressure-induced phase transitions and superconductivity in a quasi–1-dimensional topological crystalline insulator α-Bi 4 Br 4
Significance The quasi–1-dimensional bismuth bromide, α-Bi4Br4, has been predicted to be a rotational symmetry-protected topological crystalline insulator. The structural study under high pressure indicates that the α-Bi4Br4phase is stable up to 4.3 GPa. There is a rich phase diagram of physical properties under high pressure in the α-Bi4Br4phase (i.e., a pressure-induced insulator–metal transition and, most importantly, a superconductive phase near the boundary of the insulator–metal transition). These findings help to answer questions, such as whether it is possible for the symmetry-protected electrons to form Cooper pairs. The α-Bi4Br4undergoes a pressure-induced structural transition above 4.3 GPa to a triclinicP-1 phase, which is another superconductive phase.  more » « less
Award ID(s):
1720595
PAR ID:
10474969
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
36
ISSN:
0027-8424
Page Range / eLocation ID:
17696 to 17700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTNis detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTNplateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN, most likely via enhanced hybridization between the Eu 4fstates and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state. 
    more » « less
  2. In light of breakthroughs in superconductivity under high pressure, and considering that record critical temperatures (Tcs) across various systems have been achieved under high pressure, the primary challenge for higher Tcshould no longer solely be to increase Tcunder extreme conditions but also to reduce, or ideally eliminate, the need for applied pressure in retaining pressure-induced or -enhanced superconductivity. The topological semiconductor Bi0.5Sb1.5Te3(BST) was chosen to demonstrate our approach to addressing this challenge and exploring its intriguing physics. Under pressures up to ~50 GPa, three superconducting phases (BST-I, -II, and -III) were observed. A superconducting phase in BST-I appears at ~4 GPa, without a structural transition, suggesting the possible topological nature of this phase. Using the pressure-quench protocol (PQP) recently developed by us, we successfully retained this pressure-induced phase at ambient pressure and revealed the bulk nature of the state. Significantly, this demonstrates recovery of a pressure-quenched sample from a diamond anvil cell at room temperature with the pressure-induced phase retained at ambient pressure. Other superconducting phases were retained in BST-II and -III at ambient pressure and subjected to thermal and temporal stability testing. Superconductivity was also found in BST with Tcup to 10.2 K, the record for this compound series. While PQP maintains superconducting phases in BST at ambient pressure, both depressurization and PQP enhance its Tc, possibly due to microstructures formed during these processes, offering an added avenue to raise Tc. These findings are supported by our density-functional theory calculations. 
    more » « less
  3. Abstract The response of forsterite, Mg2SiO4, under dynamic compression is of fundamental importance for understanding its phase transformations and high‐pressure behavior. Here, we have carried out an in situ X‐ray diffraction study of laser‐shocked polycrystalline and single‐crystal forsterite (a‐,b‐, andc‐orientations) from 19 to 122 GPa using the Matter in Extreme Conditions end‐station of the Linac Coherent Light Source. Under laser‐based shock loading, forsterite does not transform to the high‐pressure equilibrium assemblage of MgSiO3bridgmanite and MgO periclase, as has been suggested previously. Instead, we observe forsterite and forsterite III, a metastable polymorph of Mg2SiO4, coexisting in a mixed‐phase region from 33 to 75 GPa for both polycrystalline and single‐crystal samples. Densities inferred from X‐ray diffraction data are consistent with earlier gas‐gun shock data. At higher stress, the response is sample‐dependent. Polycrystalline samples undergo amorphization above 79 GPa. For [010]‐ and [001]‐oriented crystals, a mixture of crystalline and amorphous material is observed to 108 GPa, whereas the [100]‐oriented forsterite adopts an unknown phase at 122 GPa. The first two sharp diffraction peaks of amorphous Mg2SiO4show a similar trend with compression as those observed for MgSiO3in both recent static‐ and laser‐driven shock experiments. Upon release to ambient pressure, all samples retain or revert to forsterite with evidence for amorphous material also present in some cases. This study demonstrates the utility of femtosecond free‐electron laser X‐ray sources for probing the temporal evolution of high‐pressure silicate structures through the nanosecond‐scale events of shock compression and release. 
    more » « less
  4. Abstract CeOs4Sb12, a member of the skutterudite family, has an unusual semimetallic low-temperature L -phase that inhabits a wedge-like area of the fieldH—temperatureTphase diagram. We have conducted measurements of electrical transport and megahertz conductivity on CeOs4Sb12single crystals under pressures of up to 3 GPa and in high magnetic fields of up to 41 T to investigate the influence of pressure on the differentH–Tphase boundaries. While the high-temperature valence transition between the metallic H -phase and the L -phase is shifted to higherTby pressures of the order of 1 GPa, we observed only a marginal suppression of the S -phase that is found below 1 K for pressures of up to 1.91 GPa. High-field quantum oscillations have been observed for pressures up to 3.0 GPa and the Fermi surface of the high-field side of the H -phase is found to show a surprising decrease in size with increasing pressure, implying a change in electronic structure rather than a mere contraction of lattice parameters. We evaluate the field-dependence of the effective masses for different pressures and also reflect on the sample dependence of some of the properties of CeOs4Sb12which appears to be limited to the low-field region. 
    more » « less
  5. Abstract Iron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure‐induced magnetic changes in iron nitrides and effects on compressibility remain poorly understood. Here we report synchrotron X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD) results for ε‐Fe7N3and γ′‐Fe4N up to 60 GPa at 300 K. The XES spectra reveal completion of high‐ to low‐spin transition in ε‐Fe7N3and γ′‐Fe4N at 43 and 34 GPa, respectively. The completion of the spin transition induces stiffening in bulk modulus of ε‐Fe7N3by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ′‐Fe4N. Fitting pressure‐volume data to the Birch‐Murnaghan equation of state yieldsV0 = 83.29 ± 0.03 (Å3),K0 = 232 ± 9 GPa,K0′ = 4.1 ± 0.5 for nonmagnetic ε‐Fe7N3above the spin transition completion pressure, andV0 = 54.82 ± 0.02 (Å3),K0 = 152 ± 2 GPa,K0′ = 4.0 ± 0.1 for γ′‐Fe4N over the studied pressure range. By reexamining evidence for spin transition and effects on compressibility of other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on previous XES and XRD measurements, we located the completion of high‐ to low‐spin transition at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, Fe3P, and Fe3C induces elastic stiffening, whereas that of Fe7C3induces elastic softening. Changes in compressibility at completion of spin transitions in iron‐light element alloys may influence the properties of Earth's and planetary cores. 
    more » « less