skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arnold Diffusion in a Model of Dissipative System
For a mechanical system consisting of a rotator and a pendulum coupled via a small, time-periodic Hamiltonian perturbation, the Arnold diffusion problem asserts the existence of “diffusing orbits” along which the energy of the rotator grows by an amount independent of the size of the coupling parameter, for all sufficiently small values of the coupling parameter. There is a vast literature on establishing Arnold diffusion for such systems. In this work, we consider the case when an additional, dissipative perturbation is added to the rotator-pendulum system with coupling. Therefore, the system obtained is not symplectic but conformally symplectic. We provide explicit conditions on the dissipation parameter, so that the resulting system still exhibits energy growth. The fact that Arnold diffusion may play a role in systems with small dissipation was conjectured by Chirikov. In this work, the coupling is carefully chosen, but the mechanism we present can be adapted to general couplings, and we will deal with the general case in future work.  more » « less
Award ID(s):
1814543
PAR ID:
10476340
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
SIAM Journal on Applied Dynamical Systems
Volume:
22
Issue:
3
ISSN:
1536-0040
Page Range / eLocation ID:
1983 to 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a mechanism for Arnold diffusion in energy in a model of the elliptic Hill four-body problem. Our model is expressed as a small perturbation of the circular Hill four-body problem, with the small parameter being the eccentricity of the orbits of the primaries. The mechanism relies on the existence of two normally hyperbolic invariant manifolds (NHIM's), and on the corresponding homoclinic and heteroclinic connections. The dynamics along homoclinic/heteroclinic orbits is encoded via scattering maps, which we compute numerically. Having several scattering maps, at each point we select the scattering map that gives the largest gain in energy or the scattering map that gives the smallest loss in energy. Using Birkhoff's Ergodic Theorem we show that there are pseudo-orbits generated by the selected scattering maps along which, on average, the energy grows by an amount independent of the small parameter. A shadowing lemma yields the existence of diffusing orbits. 
    more » « less
  2. Abstract We give a detailed proof of the homological Arnold conjecture for nondegenerate periodic Hamiltonians on general closed symplectic manifolds M via a direct Piunikhin–Salamon–Schwarz morphism. Our constructions are based on a coherent polyfold description for moduli spaces of pseudoholomorphic curves in a family of symplectic manifolds degenerating from $${{\mathbb {C}}{\mathbb {P}}}^1\times M$$ C P 1 × M to $${{\mathbb {C}}}^+ \times M$$ C + × M and $${{\mathbb {C}}}^-\times M$$ C - × M , as developed by Fish–Hofer–Wysocki–Zehnder as part of the Symplectic Field Theory package. To make the paper self-contained we include all polyfold assumptions, describe the coherent perturbation iteration in detail, and prove an abstract regularization theorem for moduli spaces with evaluation maps relative to a countable collection of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel Fish. 
    more » « less
  3. A non-Hermitian Weyl equation indispensably requires a three-dimensional (3D) real/synthetic space, and it is thereby perceived that a Weyl exceptional ring (WER) will not be present in thermal diffusion given its purely dissipative nature. Here, we report a recipe for establishing a 3D parameter space to imitate thermal spinor field. Two orthogonal pairs of spatiotemporally modulated advections are employed to serve as two synthetic parameter dimensions, in addition to the inherent dimension corresponding to heat exchanges. We first predict the existence of WER in our hybrid conduction–advection system and experimentally observe the WER thermal signatures verifying our theoretical prediction. When coupling two WERs of opposite topological charges, the system further exhibits surface-like and bulk topological states, manifested as stationary and continuously changing thermal processes, respectively, with good robustness. Our findings reveal the long-ignored topological nature in thermal diffusion and may empower distinct paradigms for general diffusion and dissipation controls. 
    more » « less
  4. In this article, we study how the rates of diffusion in a reaction-diffusion model for a stage structured population in a heterogeneous environment affect the model’s predictions of persistence or extinction for the population. In the case of a population without stage structure, faster diffusion is typically detrimental. In contrast to that, we find that, in a stage structured population, it can be either detrimental or helpful. If the regions where adults can reproduce are the same as those where juveniles can mature, typically slower diffusion will be favored, but if those regions are separated, then faster diffusion may be favored. Our analysis consists primarily of estimates of principal eigenvalues of the linearized system around ( 0 , 0 ) and results on their asymptotic behavior for large or small diffusion rates. The model we study is not in general a cooperative system, but if adults only compete with other adults and juveniles with other juveniles, then it is. In that case, the general theory of cooperative systems implies that, when the model predicts persistence, it has a unique positive equilibrium. We derive some results on the asymptotic behavior of the positive equilibrium for small diffusion and for large adult reproductive rates in that case. 
    more » « less
  5. Abstract The inerter has been integrated into various vibration mitigation devices, whose mass amplification effect could enhance the suppression capabilities of these devices. In the current study, the inerter is integrated with a pendulum vibration absorber, referred to as inerter pendulum vibration absorber (IPVA). To demonstrate its efficacy, the IPVA is integrated with a linear, harmonically forced oscillator seeking vibration mitigation. A theoretical investigation is conducted to understand the nonlinear response of the IPVA. It is shown that the IPVA operates based on a nonlinear energy transfer phenomenon wherein the energy of the linear oscillator transfers to the pendulum vibration absorber as a result of parametric resonance of the pendulum. The parametric instability is predicted by the harmonic balance method along with the Floquet theory. A perturbation analysis shows that a pitchfork bifurcation and period doubling bifurcation are necessary and sufficient conditions for the parametric resonance to occur. An arc-length continuation scheme is used to predict the boundary of parametric instability in the parameter space and verify the perturbation analysis. The effects of various system parameters on the parametric instability are examined. Finally, the IPVA is compared with a linear benchmark and an autoparametric vibration absorber and shows more efficacious vibration suppression. 
    more » « less