skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DDCEL: Efficient Distributed Doubly Connected Edge List for Large Spatial Networks
Abstract—The Doubly Connected Edge List (DCEL) is a popular data structure for representing planar subdivisions and is used to accelerate spatial applications like map overlay, graph simplification, and subdivision traversal. Current DCEL imple- mentations assume a standalone machine environment, which does not scale when processing the large dataset sizes that abound in today’s spatial applications. This paper proposes a Distributed Doubly Connected Edge List (DDCEL) data structure extending the DCEL to a distributed environment. The DDCEL constructor undergoes a two-phase paradigm to generate the subdivision’s vertices, half-edges, and faces. After spatially partitioning the input data, the first phase runs the sequential DCEL construction algorithm on each data partition in parallel. The second phase then iteratively merges information from multiple data parti- tions to generate the shared data structure. Our experimental evaluation with real data of road networks of up to 563 million line segments shows significant performance advantages of the proposed approach over the existing techniques.  more » « less
Award ID(s):
1831615 2237348
PAR ID:
10476566
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE International Conference on Mobile Data Management (MDM)
ISSN:
2375-0324
ISBN:
979-8-3503-4101-0
Page Range / eLocation ID:
122 to 131
Subject(s) / Keyword(s):
DCEL Distributed Polygonization
Format(s):
Medium: X
Location:
Singapore, Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Doubly Connected Edge List (DCEL) is an edge-list structure that has been widely utilized in spatial applications for planar topological computations. An important operation is the overlay which combines the DCELs of two input layers and can easily support spatial queries like the intersection, union and difference between these layers. However, existing sequential implementations for computing the overlay do not scale and fail to complete for large datasets (for example the US census tracks). In this paper we propose a distributed and scalable way to compute the overlay operation and its related supported queries. We address the issues involved in efficiently distributing the overlay operator and over various optimizations that improve performance. Our scalable solution can compute the overlay of very large real datasets (32M edges) in few minutes. 
    more » « less
  2. Abstract The Doubly Connected Edge List (DCEL) is an edge-list structure widely used in spatial applications, primarily for planar topological and geometric computations. However, it is also applicable to various types of data, including 3D models and geographic data. An essential operation is theoverlay operation, which combines the DCELs of two input polygon layers and can easily support spatial queries on polygons like the intersection, union, and difference between these layers. However, existing techniques for spatial overlay operations suffer from two main limitations. First, they fail to handle many large datasets practically used in real applications. Second, they cannot handle arbitrary spatial lines that practically form polygons, e.g., city blocks, but they are given as a set of scattered lines. This work proposes a distributed and scalable way to compute the overlay operation and its related supported queries. Our operations also support arbitrary spatial lines through a scalable polygonization process. We address the issues of efficiently distributing the lines and overlay operators and offer various optimizations that improve performance. Our experiments demonstrate that the proposed scalable solution can efficiently compute the overlay of large real datasets. 
    more » « less
  3. null (Ed.)
    With the explosion in Big Data, it is often forgotten that much of the data nowadays is generated at the edge. Specifically, a major source of data is users' endpoint devices like phones, smart watches, etc., that are connected to the internet, also known as the Internet-of-Things (IoT). This "edge of data" faces several new challenges related to hardware-constraints, privacy-aware learning, and distributed learning (both training as well as inference). So what systems and machine learning algorithms can we use to generate or exploit data at the edge? Can network science help us solve machine learning (ML) problems? Can IoT-devices help people who live with some form of disability and many others benefit from health monitoring? In this tutorial, we introduce the network science and ML techniques relevant to edge computing, discuss systems for ML (e.g., model compression, quantization, HW/SW co-design, etc.) and ML for systems design (e.g., run-time resource optimization, power management for training and inference on edge devices), and illustrate their impact in addressing concrete IoT applications. 
    more » « less
  4. This paper demonstrates Pynapple-G, an open-source library for scalable spatial grouping queries based on Apache Sedona (formerly known as GeoSpark). We demonstrate two modules, namely, SGPAC and DDCEL, that support grouping points, grouping lines, and polygon overlays. The SGPAC module provides a large-scale grouping of spatial points by highly complex polygon boundaries. The grouping results aggregate the number of spatial points within the boundaries of each polygon. The DDCEL module provides the first parallelized algorithm to group spatial lines into a DCEL data structure and discovers planar polygons from scattered line segments. Exploiting the scalable DCEL, we support scalable overlay operations over multiple polygon layers to compute the layers’ intersection, union, or difference. To showcase Pyneapple-G, we have developed a frontend web application that enables users to interact with these modules, select their data layers or data points, and view results on an interactive map. We also provide interactive notebooks demonstrating the superiority and simplicity of Pyneapple-G to help social scientists and developers explore its full potential. 
    more » « less
  5. The rapid growth in technology and wide use of internet has increased smart applications such as intelligent transportation control system, and Internet of Things, which heavily rely on an efficient and reliable connectivity network. To overcome high bandwidth work load on the network, as well as minimize latency for real-time applications, the computation can be moved from the central cloud to a distributed edge cloud. The edge computing benefits various smart applications that uses distributed network for data analytics and services. Different from the existing cloud management solutions, edge computing needs to move cloud management services towards distributed heterogeneous edge nodes for multi-tenant user applications. However, existing cloud management services do not offer remote deployment of multi-tenant user applications on the cloud of edge nodes. In this paper, we propose a practical edge cloud software framework for deploying multi-tenant distributed smart applications. Having multiple distributed end nodes, auto discovery of all active end nodes is required for deploying multi-tenant user applications. However, existing cloud solutions require either private network or fixed IP address, which is not achievable for the distributed edge nodes. Most of the edge nodes connected through the public internet without fixed IP, and some of them even connect through IEEE 802.15 based sensor networks. We propose to build a software platform to manage the distributed edge nodes as well as support services to deploy and launch isolated, multi-tenant user applications through a lightweight container. We propose an architectural solution to remotely access edge cloud management services through intermittent internet connections. We open sourced our whole set of software solutions, and analyzed the major performance metrics of the edge cloud platform. 
    more » « less