Tribochemistry, which is another name for mechanochemistry driven by shear, deals with complex and dynamic interfacial processes that can lead to surface wear or formation of beneficial tribofilms. For better mechanistic understanding of these processes, we investigated the reactivity of tribopolymerization of organic molecules with different internal ring strain (methylcyclopentane, cyclohexane, and cyclohexene) on a stainless steel (SS) surface in inert (N2), oxidizing (O2), and reducing (H2) environments at room temperature. On the clean stainless steel surface, precursor molecules were found to physisorb with a broad range of molecular orientations. In inert and reducing environments, the strain-free cyclohexane showed the lowest tribochemical activity among the three molecules tested. Compared to the N2 environment, the tribochemical activity in H2 was suppressed. In the O2 environment, only cyclohexene produced tribofilms and methylcyclopentane while cyclohexane did not. When tribofilms were analyzed with Raman spectroscopy, the spectral features of diamond-like carbon (DLC) or amorphous carbon (a-C) were observed due to photochemical degradation of triboproducts. Based on infrared spectroscopy, tribofilms were found to be organic polymers containing oxygenated groups. Whenever polymeric tribrofilms were produced, wear volume was suppressed by orders of magnitudes but not completely to zero. These results support previously suggested mechanisms which involve surface oxygen as a reactant species in the tribopolymerization process.
more »
« less
Possible Origin of D- and G-band Features in Raman Spectra of Tribofilms
In the Raman analysis of tribofilms produced from organic precursors, the D- and G-band features are often observed, which resemble the characteristic bands of diamond-like carbon (DLC), amorphous carbon (a-C), or graphitic materials. This study reports experimental evidence that the D- and G-bands features in the Raman spectra of tribofilms could be generated by photochemical degradation of triboproducts due to the focused irradiation of laser beam during the Raman analysis, indicating that they are not unique to the genuine structure of the tribofilm produced via friction. This finding suggests that other complementary and non-destructive characterization is required to determine whether DLC, a-C, or graphitic species are produced tribochemically by frictional shear.
more »
« less
- PAR ID:
- 10478345
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Tribology Letters
- Volume:
- 71
- Issue:
- 2
- ISSN:
- 1023-8883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, we describe reducing the moisture vapor transmission through a commercial polymer bag material using a silicon-incorporated diamond-like carbon (Si-DLC) coating that was deposited using plasma-enhanced chemical vapor deposition. The structure of the Si-DLC coating was analyzed using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and electron energy loss spectroscopy. Moisture vapor transmission rate (MVTR) testing was used to understand the moisture transmission barrier properties of Si-DLC-coated polymer bag material; the MVTR values decreased from 10.10 g/m2 24 h for the as-received polymer bag material to 6.31 g/m2 24 h for the Si-DLC-coated polymer bag material. Water stability tests were conducted to understand the resistance of the Si-DLC coatings toward moisture; the results confirmed the stability of Si-DLC coatings in contact with water up to 100 °C for 4 h. A peel-off adhesion test using scotch tape indicated that the good adhesion of the Si-DLC film to the substrate was preserved in contact with water up to 100 °C for 4 h.more » « less
-
null (Ed.)Abstract Burned or charred organic matter in anthropogenic combustion features may provide important clues about past human activities related to fire. To interpret archaeological hearths, a correct identification of the organic source material is key. In the present work, Raman spectroscopy is applied to characterise the structural properties of char produced in laboratory heating- and open-fire experiments. This reference data set is compared to analyses of three different archaeological sites with Middle Palaeolithic combustion contexts. The results show that it is possible to determine whether a charred fragment is the product of burning animal-derived matter (e.g. meat) or plant-derived matter (e.g. wood) by plotting a few Raman spectral parameters (i.e. position of G and D bands, and intensity ratios H D / H G and H V / H G ) against one another. The most effective parameters for discriminating animal- from plant-derived matter are the position of the G band and the H V / H G intensity ratio. This method can be applied on raw sample material and on uncovered micromorphological thin sections. The latter greatly compliments micromorphology by providing information about char fragments without any clear morphological characteristics. This study is the first of its kind and may provide archaeologists with a robust new method to distinguish animal- from plant-derived char in thin sections.more » « less
-
This study reports on the highly simple fabrication of green carbon black (GCB) generated from scrap tires with acetic acid to improve the adsorption efficiency for water purification, which is thoroughly compared with conventional carbon black (CB) obtained from petrochemicals. Unlike traditional modification processes with strong acids or bases, the introduction of a relatively mild acid readily allowed for the effective modification of GCB to increase the uptake capability of metal ions and toxic organic dyes to serve as effective adsorbents. The morphological features and thermal decomposition patterns were examined by electron microscopy and thermogravimetric analysis (TGA). The surface functional groups were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The structural information (ratio of D-defects/G band-graphitic domains) obtained by Raman spectroscopy clearly suggested the successful fabrication of GCB (ID/IG ratio of 0.74), which was distinctively different from typical CB (ID/IG ratio of 0.91). In the modified GCB, the specific surface area (SBET) gradually increased with the reduction of pore size as a function of acetic acid content (52.97 m2/g for CB, 86.64 m2/g for GCB, 102.10-119.50 m2/g for acid-treated GCB). The uptake capability of the modified GCB (312.5 mg/g) for metal ions and organic dyes was greater than that of the unmodified GCB (161.3 mg/g) and typical CB (181.8 mg/g), presumably due to the presence of adsorbed acid. Upon testing them as adsorbents in an aqueous solution, all these carbon materials followed the Langmuir isotherm over the Freundlich model. In addition, the removal rates of cationic species (>70% removal of Cu2+ and crystal violet in 30 min) were much faster and far greater than those of anionic metanil yellow (<40% removal in 3 h), given the strong electrostatic interactions. Thus, this work demonstrates the possibility of recycling waste tires in the powder form of GCB as a cost-effective and green adsorbent that can potentially substitute traditional CB, and the modification strategy provides a proof of concept for developing simple fabrication guidelines of other carbonaceous materials.more » « less
-
Abstract High surface area graphitic mesoporous carbons (M‐mGMC; M=Ni, Fe, Co or Ni‐Fe) were synthesizedviacatalytic graphitization using a hard template based synthesis method. In house prepared SBA‐15 silica material was impregnated with metal precursors to obtain M/SBA‐15, template for M‐mGMC synthesis. These materials were studied using different material characterization techniques, such as nitrogen adsorption desorption (BET), X‐ray diffraction (XRD) analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Specific surface area ranging from 1,227.9 m2g−1to 1,320.7 m2g−1was observed for four M‐mGMCs. Raman spectroscopy, XPS and wide angle XRD suggested presence of graphitic structure in these materials along with disorders. Electrocatalytic performance of these materials along with conventional carbon black (Vulcan XC‐72) were evaluated in a single‐stack proton exchange membrane fuel cell (PEMFC). Pt/NiFe‐mGMC exhibited enhanced electrocatalytic activity compared to Pt/Ni‐mGMC, Pt/Fe‐mGMC and Pt/Co‐mGMC electrocatalysts. However, Pt/NiFe‐mGMC lacked adequate proton transport in membrane electrode assembly (MEA) compared to Pt/Vulcan XC‐72. This exploratory study showed that NiFe‐mGMC may find application as electrocatalyst support material in PEMFC.more » « less
An official website of the United States government

