skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous symmetry breaking in a trapped-ion spin chain
One-dimensional systems exhibiting a continuous symmetry can host quantum phases of matter with true long-range order only in the presence of sufficiently long-range interactions1. In most physical systems, however, the interactions are short-ranged, hindering the emergence of such phases in one dimension. Here we use a one-dimensional trapped-ion quantum simulator to prepare states with long-range spin order that extends over the system size of up to 23 spins and is characteristic of the continuous symmetry-breaking phase of matter2,3. Our preparation relies on simultaneous control over an array of tightly focused individual addressing laser beams, generating long-range spin–spin interactions. We also observe a disordered phase with frustrated correlations. We further study the phases at different ranges of interaction and the out-of-equilibrium response to symmetry-breaking perturbations. This work opens an avenue to study new quantum phases and out-of-equilibrium dynamics in low-dimensional systems.  more » « less
Award ID(s):
1912799 2142866 1839232 2120757 2325080 2112893 2125899
PAR ID:
10478413
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature
Volume:
623
Issue:
7988
ISSN:
0028-0836
Page Range / eLocation ID:
713 to 717
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One-dimensional systems exhibiting a continuous symmetry can host quantum phases of matter with true long-range order only in the presence of sufficiently long-range interactions. In most physical systems, however, the interactions are short-ranged, hindering the emergence of such phases in one dimension. Here we use a one-dimensional trapped-ion quantum simulator to prepare states with long-range spin order that extends over the system size of up to 23 spins and is characteristic of the continuous symmetry-breaking phase of matter. Our preparation relies on simultaneous control over an array of tightly focused individual-addressing laser beams, generating long-range spin-spin interactions. We also observe a disordered phase with frustrated correlations. We further study the phases at different ranges of interaction and the out-of-equilibrium response to symmetry-breaking perturbations. This work opens an avenue to study new quantum phases and out-of-equilibrium dynamics in low-dimensional systems. 
    more » « less
  2. Abstract Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals 1–8 , in which time-translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions 9,10 , solid-state spin systems 11–15 , ultracold atoms 16,17 and superconducting qubits 18–20 . Here we report the observation of a distinct type of non-equilibrium state of matter, Floquet symmetry-protected topological phases, which are implemented through digital quantum simulation with an array of programmable superconducting qubits. We observe robust long-lived temporal correlations and subharmonic temporal response for the edge spins over up to 40 driving cycles using a circuit of depth exceeding 240 and acting on 26 qubits. We demonstrate that the subharmonic response is independent of the initial state, and experimentally map out a phase boundary between the Floquet symmetry-protected topological and thermal phases. Our results establish a versatile digital simulation approach to exploring exotic non-equilibrium phases of matter with current noisy intermediate-scale quantum processors 21 . 
    more » « less
  3. null (Ed.)
    In systems with many local degrees of freedom, high-symmetry points in the phase diagram can provide an important starting point for the investigation of their properties throughout the phase diagram. In systems with both spin and orbital (or valley) degrees of freedom such a starting point gives rise to SU(4)-symmetric models.Here we consider SU(4)-symmetric "spin'' models, corresponding to Mott phases at half-filling, i.e. the six-dimensional representation of SU(4). This may be relevant to twisted multilayer graphene.In particular, we study the SU(4) antiferromagnetic "Heisenberg'' model on the triangular lattice, both in the classical limit and in the quantum regime. Carrying out a numerical study using the density matrix renormalization group (DMRG), we argue that the ground state is non-magnetic.We then derive a dimer expansion of the SU(4) spin model. An exact diagonalization (ED) study of the effective dimer model suggests that the ground state breaks translation invariance, forming a valence bond solid (VBS) with a 12-site unit cell.Finally, we consider the effect of SU(4)-symmetry breaking interactions due to Hund's coupling, and argue for a possible phase transition between a VBS and a magnetically ordered state. 
    more » « less
  4. Electronic spins can form long-range entangled phases of condensed matter named quantum spin liquids. Their existence is conceptualized in models of two- or three-dimensional frustrated magnets that evade symmetry-breaking order down to zero temperature. Quantum spin ice (QSI) is a theoretically well-established example described by an emergent quantum electrodynamics, with excitations behaving like photon and matter quasiparticles. The latter are fractionally charged and equivalent to the `spinons' emerging from coherent phases of singlets in one dimension, where clear experimental proofs of fractionalization exist. However, in frustrated magnets it remains difficult to establish consensual evidence for quantum spin liquid ground states and their fractional excitations. Here, we use backscattering neutron spectroscopy to achieve extremely high resolution of the time-dependent magnetic response of the candidate QSI material Ce2Sn2O7. We find a gapped spectrum featuring a threshold and peaks that match theories for pair production and propagation of fractional matter excitations (spinons) strongly coupled to a background gauge field. The observed peaks provide evidence for a QSI through spectroscopic signatures of space-time symmetry fractionalization, while the threshold behavior corroborates the regime of strong light-matter interaction predicted for the emergent universe in a QSI. 
    more » « less
  5. We study the nature of the excitations of an antiferromagnetic (AFM) Heisenberg chain with staggered long range interactions using the time-dependent density matrix renormalization group method and by means of a multi-spinon approximation. The chain undergoes true symmetry breaking and develops long range order, transitioning from a gapless spin liquid to a gapless ordered AFM phase. The spin dynamic structure factor shows that the emergence of Néel order can be associated to the formation of bound states of spinons that become coherent magnons. The quasiparticle band leaks out from the two-spinon continuum that is pushed up to higher energies. Our physical picture is also supported by an analysis of the behavior of the excitations in real-time. 
    more » « less