skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations
The local explanation provides heatmaps on images to explain how Convolutional Neural Networks (CNNs) derive their output. Due to its visual straightforwardness, the method has been one of the most popular explainable AI (XAI) methods for diagnosing CNNs. Through our formative study (S1), however, we captured ML engineers' ambivalent perspective about the local explanation as a valuable and indispensable envision in building CNNs versus the process that exhausts them due to the heuristic nature of detecting vulnerability. Moreover, steering the CNNs based on the vulnerability learned from the diagnosis seemed highly challenging. To mitigate the gap, we designed DeepFuse, the first interactive design that realizes the direct feedback loop between a user and CNNs in diagnosing and revising CNN's vulnerability using local explanations. DeepFuse helps CNN engineers to systemically search unreasonable local explanations and annotate the new boundaries for those identified as unreasonable in a labor-efficient manner. Next, it steers the model based on the given annotation such that the model doesn't introduce similar mistakes. We conducted a two-day study (S2) with 12 experienced CNN engineers. Using DeepFuse, participants made a more accurate and reasonable model than the current state-of-the-art. Also, participants found the way DeepFuse guides case-based reasoning can practically improve their current practice. We provide implications for design that explain how future HCI-driven design can move our practice forward to make XAI-driven insights more actionable.  more » « less
Award ID(s):
2113350 2103592 1907805
PAR ID:
10478612
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
7
Issue:
CSCW2
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Convolutional neural networks (CNNs) have recently attracted great attention in geoscience due to their ability to capture non-linear system behavior and extract predictive spatiotemporal patterns. Given their black-box nature however, and the importance of prediction explainability, methods of explainable artificial intelligence (XAI) are gaining popularity as a means to explain the CNN decision-making strategy. Here, we establish an intercomparison of some of the most popular XAI methods and investigate their fidelity in explaining CNN decisions for geoscientific applications. Our goal is to raise awareness of the theoretical limitations of these methods and gain insight into the relative strengths and weaknesses to help guide best practices. The considered XAI methods are first applied to an idealized attribution benchmark, where the ground truth of explanation of the network is known a priori , to help objectively assess their performance. Secondly, we apply XAI to a climate-related prediction setting, namely to explain a CNN that is trained to predict the number of atmospheric rivers in daily snapshots of climate simulations. Our results highlight several important issues of XAI methods (e.g., gradient shattering, inability to distinguish the sign of attribution, ignorance to zero input) that have previously been overlooked in our field and, if not considered cautiously, may lead to a distorted picture of the CNN decision-making strategy. We envision that our analysis will motivate further investigation into XAI fidelity and will help towards a cautious implementation of XAI in geoscience, which can lead to further exploitation of CNNs and deep learning for prediction problems. 
    more » « less
  2. The introduction of deep learning and CNNs to image recognition problems has led to state-of-the-art classification accuracy. However, CNNs exacerbate the issue of algorithm explainability due to deep learning’s black box nature. Numerous explainable AI (XAI) algorithms have been developed that provide developers insight into the operations of deep learning. We aim to make XAI explanations more user-centric by introducing modifications to existing XAI algorithms based on cognitive theory. The goal of this research is to yield intuitive XAI explanations that more closely resemble explanations given by experts in the domain of bird watching. Using an existing base XAI algorithm, we conducted two user studies with expert bird watchers and found that our novel averaged and contrasting XAI algorithms are significantly preferred over the base XAI algorithm for bird identification. 
    more » « less
  3. eXplainable Artificial Intelligence (XAI) has garnered significant attention for enhancing transparency and trust in machine learning models. However, the scopes of most existing explanation techniques focus either on offering a holistic view of the explainee model (global explanation) or on individual instances (local explanation), while the middle ground, i.e., cohort-based explanation, is less explored. Cohort explanations offer insights into the explainee's behavior on a specific group or cohort of instances, enabling a deeper understanding of model decisions within a defined context. In this paper, we discuss the unique challenges and opportunities associated with measuring cohort explanations, define their desired properties, and create a generalized framework for generating cohort explanations based on supervised clustering. 
    more » « less
  4. While a vast collection of explainable AI (XAI) algorithms has been developed in recent years, they have been criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these gaps by making AI explanations selective ---a fundamental property of human explanations---by selectively presenting a subset of model reasoning based on what aligns with the recipient's preferences. We propose a general framework for generating selective explanations by leveraging human input on a small dataset. This framework opens up a rich design space that accounts for different selectivity goals, types of input, and more. As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task. We conducted two experimental studies to examine three paradigms based on our proposed framework: in Study 1, we ask the participants to provide critique-based or open-ended input to generate selective explanations (self-input). In Study 2, we show the participants selective explanations based on input from a panel of similar users (annotator input). Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI and improving collaborative decision making and subjective perceptions of the AI system, but also paint a nuanced picture that attributes some of these positive effects to the opportunity to provide one's own input to augment AI explanations. Overall, our work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its potential to encourage future work to make AI explanations more human-compatible. 
    more » « less
  5. As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency, and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) have been attracting considerable attention and have tremendously helped Machine Learning (ML) engineers in understand AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model’s reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs’ reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Second, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision and Natural Language Processing domains. Additional resources related to event prediction are included in the article website:https://kugaoyang.github.io/EGL/ 
    more » « less