skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wide‐Bandgap Nickel Oxide with Tunable Acceptor Concentration for Multidimensional Power Devices
Abstract Multidimensional power devices can achieve performance beyond conventional limits by deploying charge‐balanced p‐n junctions. A key obstacle to developing such devices in many wide‐bandgap (WBG) and ultra‐wide bandgap (UWBG) semiconductors is the difficulty of native p‐type doping. Here the WBG nickel oxide (NiO) as an alternative p‐type material is investigated. The acceptor concentration (NA) in NiO is modulated by oxygen partial pressure during magnetron sputtering and characterized using a p‐n+heterojunction diode fabricated on gallium oxide (Ga2O3) substrate. Capacitance and breakdown measurements reveal a tunableNAfrom < 1018 cm−3to 2×1018 cm−3with the practical breakdown field (EB) of 3.8 to 6.3 MV cm−1. ThisNArange allows for charge balance to n‐type region with reasonable process latitude, andEBis high enough to pair with many WBG and UWBG semiconductors. The extractedNAis then used to design a multidimensional Ga2O3diode with NiO field‐modulation structure. The diodes fabricated with two differentNAboth achieve 8000 V breakdown voltage and 4.7 MV cm−1average electric field. This field is over three times higher than the best report in prior multi‐kilovolt lateral devices. These results show the promise of p‐type NiO for pushing the performance limits of power devices.  more » « less
Award ID(s):
2230412 2036740
PAR ID:
10479029
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
11
Issue:
1
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Edge termination is the enabling building block of power devices to exploit the high breakdown field of wide bandgap (WBG) and ultra-wide bandgap (UWBG) semiconductors. This work presents a heterogeneous junction termination extension (JTE) based on p-type nickel oxide (NiO) for gallium oxide (Ga2O3) devices. Distinct from prior JTEs usually made by implantation or etch, this NiO JTE is deposited on the surface of Ga2O3 by magnetron sputtering. The JTE consists of multiple NiO layers with various lengths to allow for a graded decrease in effective charge density away from the device active region. Moreover, this surface JTE has broad design window and process latitude, and its efficiency is drift-layer agnostic. The physics of this NiO JTE is validated by experimental applications into NiO/Ga2O3 p–n diodes fabricated on two Ga2O3 wafers with different doping concentrations. The JTE enables a breakdown voltage over 3.2 kV and a consistent parallel-plate junction field of 4.2 MV/cm in both devices, rendering a power figure of merit of 2.5–2.7 GW/cm2. These results show the great promise of the deposited JTE as a flexible, near ideal edge termination for WBG and UWBG devices, particularly those lacking high-quality homojunctions. 
    more » « less
  2. β-Ga2O3is an emerging material and has the potential to revolutionize power electronics due to its ultra-wide-bandgap (UWBG) and lower native substrate cost compared to Silicon Carbide and Gallium Nitride. Sinceβ-Ga2O3technology is still not mature, experimental study ofβ-Ga2O3is difficult and expensive. Technology-Computer-Aided Design (TCAD) is thus a cost-effective way to study the potentials and limitations ofβ-Ga2O3devices. In this paper, TCAD parameters calibrated to experiments are presented. They are used to perform the simulations in heterojunction p-NiO/n-Ga2O3diode, Schottky diode, and normally-off Ga2O3vertical FinFET. Besides the current-voltage (I-V) simulations, breakdown, capacitance-voltage (C-V), and short-circuit ruggedness simulations with robust setups are discussed. TCAD Sentaurus is used in the simulations but the methodologies can be applied in other simulators easily. This paves the road to performing a holistic study ofβ-Ga2O3devices using TCAD. 
    more » « less
  3. Abstract The discovery and development of ultra-wide bandgap (UWBG) semiconductors is crucial to accelerate the adoption of renewable power sources. This necessitates an UWBG semiconductor that exhibits robust doping with high carrier mobility over a wide range of carrier concentrations. Here we demonstrate that epitaxial thin films of the perovskite oxide NdxSr1xSnO3(SSO) do exactly this. Nd is used as a donor to successfully modulate the carrier concentration over nearly two orders of magnitude, from 3.7 × 1018 cm−3to 2.0 × 1020 cm−3. Despite being grown on lattice-mismatched substrates and thus having relatively high structural disorder, SSO films exhibited the highest room-temperature mobility, ~70 cm2 V−1 s−1, among all known UWBG semiconductors in the range of carrier concentrations studied. The phonon-limited mobility is calculated from first principles and supplemented with a model to treat ionized impurity and Kondo scattering. This produces excellent agreement with experiment over a wide range of temperatures and carrier concentrations, and predicts the room-temperature phonon-limited mobility to be 76–99 cm2 V−1 s−1depending on carrier concentration. This work establishes a perovskite oxide as an emerging UWBG semiconductor candidate with potential for applications in power electronics. 
    more » « less
  4. Abstract We report threshold voltage (VTH) control in ultrawide bandgap Al0.4Ga0.6N-channel metal oxide semiconductor heterostructure field-effect transistors using a high-temperature (300 °C) anneal of the high-kZrO2gate-insulator. Annealing switched the polarity of the fixed charges at the ZrO2/AlGaN interface from +5.5 × 1013cm−2to −4.2 × 1013cm−2, pinningVTHat ∼ (−12 V), reducing gate leakage by ∼103, and improving subthreshold swing 2× (116 mV decade−1). It also enabled the gate to repeatedly withstand voltages from −40 to +18 V, allowing the channel to be overdriven doubling the peak currents to ∼0.5 A mm−1
    more » « less
  5. Abstract Breakdown voltage (BV) is arguably one of the most critical parameters for power devices. While avalanche breakdown is prevailing in silicon and silicon carbide devices, it is lacking in many wide bandgap (WBG) and ultra-wide bandgap (UWBG) devices, such as the gallium nitride high electron mobility transistor and existing UWBG devices, due to the deployment of junction-less device structures or the inherent material challenges of forming p-n junctions. This paper starts with a survey of avalanche and non-avalanche breakdown mechanisms in WBG and UWBG devices, followed by the distinction between the static and dynamic BV. Various BV characterization methods, including the static and pulse I – V sweep, unclamped and clamped inductive switching, as well as continuous overvoltage switching, are comparatively introduced. The device physics behind the time- and frequency-dependent BV as well as the enabling device structures for avalanche breakdown are also discussed. The paper concludes by identifying research gaps for understanding the breakdown of WBG and UWBG power devices. 
    more » « less