Abstract Precipitation prediction at seasonal timescales is important for planning and management of water resources as well as preparedness for hazards such as floods, droughts and wildfires. Quantifying predictability is quite challenging as a consequence of a large number of potential drivers, varying antecedent conditions, and small sample size of high‐quality observations available at seasonal timescales, that in turn, increases prediction uncertainty and the risk of model overfitting. Here, we introduce a generalized probabilistic framework to account for these issues and assess predictability under uncertainty. We focus on prediction of winter (Nov–Mar) precipitation across the contiguous United States, using sea surface temperature‐derived indices (averaged in Aug–Oct) as predictors. In our analysis we identify “predictability hotspots,” which we define as regions where precipitation is inherently more predictable. Our framework estimates the entire predictive distribution of precipitation using copulas and quantifies prediction uncertainties, while employing principal component analysis for dimensionality reduction and a cross validation technique to avoid overfitting. We also evaluate how predictability changes across different quantiles of the precipitation distribution (dry, normal, wet amounts) using a multi‐category 3 × 3 contingency table. Our results indicate that well‐defined predictability hotspots occur in the Southwest and Southeast. Moreover, extreme dry and wet conditions are shown to be relatively more predictable compared to normal conditions. Our study may help with water resources management in several subregions of the United States and can be used to assess the fidelity of earth system models in successfully representing teleconnections and predictability.
more »
« less
Statistical modeling of Peromyscus maniculatus (deer mouse) amounts per trap with spatiotemporal data
The North American deer mice (Peromyscus maniculatus) have been used as an environmental change indicator in North America. Since precipitation and temperature changes affect plant productivity and deer mouse habitats, they are substantial factors of deer mouse population radical variations. Therefore, modeling their association is important for monitoring dynamic changes of the deer mouse amounts per trap and relationships among weather variables such as precipitation, maximum and minimum temperatures. We acquired the National Ecological Observatory Network (NEON) data of deer mouse monthly amounts in traps for 2013 through 2022 in the contiguous United States from long-term study sites maintained for monitoring spatial differences and temporal changes in populations. We categorize the contiguous United States into six regions associated with climates. The proposed method identifies important factors of temperature and precipitation seasonal patterns with the month and year temporal effect interacting with the proposed climate-related regions.
more »
« less
- PAR ID:
- 10479168
- Publisher / Repository:
- Sprinter Link
- Date Published:
- Journal Name:
- Japanese Journal of Statistics and Data Science
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2520-8756
- Page Range / eLocation ID:
- 847 to 860
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Some of the largest climatic changes in the Arctic have been observed in Alaska and the surrounding marginal seas. Near-surface air temperature (T2m), precipitation ( P ), snowfall, and sea ice changes have been previously documented, often in disparate studies. Here, we provide an updated, long-term trend analysis (1957–2021; n = 65 years) of such parameters in ERA5, NOAA U.S. Climate Gridded Dataset (NClimGrid), NOAA National Centers for Environmental Information (NCEI) Alaska climate division, and composite sea ice products preceding the upcoming Fifth National Climate Assessment (NCA5) and other near-future climate reports. In the past half century, annual T2m has broadly increased across Alaska, and during winter, spring, and autumn on the North Slope and North Panhandle (T2m > 0.50°C decade −1 ). Precipitation has also increased across climate divisions and appears strongly interrelated with temperature–sea ice feedbacks on the North Slope, specifically with increased (decreased) open water (sea ice extent). Snowfall equivalent (SFE) has decreased in autumn and spring, perhaps aligned with a regime transition of snow to rain, while winter SFE has broadly increased across the state. Sea ice decline and melt-season lengthening also have a pronounced signal around Alaska, with the largest trends in these parameters found in the Beaufort Sea. Alaska’s climatic changes are also placed in context against regional and contiguous U.S. air temperature trends and show ∼50% greater warming in Alaska relative to the lower-48 states. Alaska T2m increases also exceed those of any contiguous U.S. subregion, positioning Alaska at the forefront of U.S. climate warming. Significance Statement This study produces an updated, long-term trend analysis (1957–2021) of key Alaska climate parameters, including air temperature, precipitation (including snowfall equivalent), and sea ice, to inform upcoming climate assessment reports, including the Fifth National Climate Assessment (NCA5) scheduled for publication in 2023. Key findings include widespread annual and seasonal warming with increased precipitation across much of the state. Winter snowfall has broadly increased, but spring and autumn snowfalls have decreased as rainfall increased. Autumn warming and precipitation increases over the North Slope, in particular, appear related to decreased sea ice coverage in the Beaufort Sea and Chukchi Seas. These trends may result from interrelated processes that accelerate Alaska climate changes relative to those of the contiguous United States.more » « less
-
Abstract Identifying regions that mediate regional propagation of atmospheric perturbations is important to assessing the susceptibility and resilience of complex hydroclimate systems. Detecting the regional gateways through causal inference, can help unravel the interplay of physical processes and inform projections of future changes. In this study, we characterize the causal interactions among nine climate regions in the contiguous United States using long‐term (1901–2018) precipitation data. The constructed causal networks reveal the cross‐regional propagation of precipitation perturbations. Results show that the Ohio Valley region acts as an atmospheric gateway for precipitation and moisture transport in the U.S., which is largely regulated by the regional convective uplift. The findings have implications for improving predicative capacity of hydroclimate modeling of regional precipitation.more » « less
-
null (Ed.)Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks.more » « less
-
Abstract Analyzing gradual trends in meteorological drought has become increasingly important as anthropogenic climate change and natural climate variability interact to complicate measurement of drought severity. Complex seasonality and long-term trends pose a limitation in understanding spatial trends in nonstationary changes of meteorological drought in the United States. This study seeks to address this issue by simultaneously analyzing recurring seasonal patterns (stationary component) and long-term drought trends (nonstationary component), with a unique focus on nonlinear trends and common regional patterns. We analyzed 696 instrumental precipitation gauges with long historical records in the continental United States, using a novel spline-based model to disaggregate a 3-month meteorological drought index (SPI) into its seasonal and long-term components. The disaggregated components for each gauge were then clustered into subregions with similar seasonality and groupings with similar long-term trends using a two-step process. Our results identify clearly defined regions based on precipitation seasonality, while long-term trends are not spatially coherent with the seasonality. Instead, these findings support prior findings of an increasingly drier western United States and an increasingly wetter eastern United States over the last century, but with more nuanced spatial and temporal patterns. The new clustering analysis based on nonstationary meteorological drought trends can contribute to informing and adapting current water management strategies to long-term drought trends. Significance Statement This study considered 656 precipitation gauges across the continental United States to find regions with similar precipitation seasonality and then to group records with similar long-term climate trends. The study focused on 3-month average precipitation, a key indicator for drought monitoring. We identified eight regions across the United States with similar precipitation seasonality. From 1920 to the present, we found continuous drying trends throughout the western United States, continuously wetter trends in the northern plains, and an overall wetter trend interrupted by a midcentury dry period (1930–50) for much of the central Plains and Midwest. This study’s use of splines, or fitted curves, allowed these nonlinear patterns, which we believe better capture the nuances and intensification of climate change effects on precipitation.more » « less