skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Readout of a quantum processor with high dynamic range Josephson parametric amplifiers
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 Ω environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250–300 MHz with input saturation powers up to −95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimation of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Finally, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.  more » « less
Award ID(s):
1747426
PAR ID:
10479867
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
AIP
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
1
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design and characterization of a low noise amplifier optimized for the readout of microwave kinetic inductance detectors is described. The work is first motivated through a description of microwave kinetic inductance detectors and a discussion of the requirements for the low-noise amplifiers employed for readout of these devices. Next, the design of a two-stage silicon germanium cryogenic integrated circuit low noise amplifier is presented. The small-signal and large-signal characteristics of the fabricated amplifier are then measured. It is shown that, at a physical temperature of 16 K, the amplifier achieves a gain of greater than 30 dB and an average noise temperature of 3.3 K over the 0.4–1.2 GHz frequency band while dissipating less than 7 mW. Moreover, the wideband compression characteristics are measured it is found that the linearity of the amplifier is sufficient to support frequency domain multiplexed readout of more than 500 detectors. 
    more » « less
  2. Recent advancements in low power and low noise front-end amplifiers have made it possible to support high-speed data transmission within the deep roll-off regions of conventional wireline channels. Despite being primarily limited by inter-symbol-interference (ISI), these legacy channels also require power-consuming front-end amplifiers due to increased insertion-loss at high frequencies. Wireline-like broadband channels, such as proximity communication and human-body-communication (HBC), as well as multi-lane, densely-packed channels, are further constrained by their high loss and unique channel responses which cause the received signal to be noise-limited. To address these challenges, this paper proposes the use of a discrete-time integrating amplifier as a low power <1 pJ/b using 65nm CMOS up to 5-6 Gb/s) alternative to traditional continuous-time front-end amplifiers. Integrating amplifiers also reduce the effects of noise due to its inherent current integrating process. The paper provides a detailed mathematical analysis of gain of two conventional and three novel and improved integrating amplifiers, accurate input referred noise estimations, signal-to-noise ratio, and a comparison of the integrating amplifier’s performance with that of a low-noise amplifier. The analysis identifies the most optimum integrator architecture and provides comparison with simulated results. This paper also develops theoretical expressions and provides in-depth understanding of input referred noise, while supporting them by simulations using 65nm CMOS technology node. Finally, a comparative analysis between low-noise amplifier and discrete-time integrating amplifier is presented to demonstrate power and noise benefits for both legacy and wireline-like channels, while providing an easier design space as integrator provides two-dimensional controllability for gain. 
    more » « less
  3. null (Ed.)
    This paper presents a fully reconfigurable readout circuit including a chopper-stabilized neural amplifier and a successive approximation register (SAR) analog-to-digital converter (ADC) for neural signal recording applications. Since the target neural signals - action potentials (APs) and local field potentials (LFPs) differ in the peak amplitude while occupying different frequency bandwidths, gain, and bandwidth reconfigurability would be advantageous in improving power and noise performance. The readout circuit is designed in 180 nm standard CMOS technology. It achieves the mid-band gain of 50.3 dB in the frequency band of 0.1 Hz - 250 Hz to detect the LFPs, and 63.4 dB in 267 Hz - 20.8 kHz for detecting the APs. The neural amplifier consumes a total power of 1.54 μW and 1.94 μW for LFP and AP configurations, respectively. The input-referred noises have been achieved as 0.97 μV rms (0.1 Hz - 250 Hz), and 0.44 μV rms (250 Hz - 5 kHz), leading to a noise efficiency factor (NEF) of 1.27 and 1.21, for the two configurations, respectively. It rejects the generated large DC offset up to 40 mV at the electrode-tissue interface, by implementing a DC servo loop (DSL). The offset voltage with the DSL becomes 0.23 mV, which is acceptable for the neural experiments. Enabling the impedance boosting loop, the DC input impedance is found to be within the range of 1.77 - 2.27 GΩ, introducing the reconfigurability in impedance for matching with the electrode impedance. The SAR-ADC having a varying sampling frequency ranging from 10 - 40 ksamples/s demonstrates to digitize the APs and the LFPs with the resolution from 8 - 10 bits. The entire AFE provides good compatibility to record the neural signal while lowering the large DC offset down to 0.23 mV. 
    more » « less
  4. A common problem in single-cell measurement is the low-throughput nature of measurements. Monolithic CMOS microsystems have enabled many parallel measurements to take place simultaneously to increase throughput due to the integration of electrodes and amplifiers into a single chip. This paper explores a CMOS chip containing an array of 1024 parallel transimpedance amplifiers that takes advantage of a “half-shared” operational amplifier architecture. This architecture splits a traditional 5-transistor operational amplifier into two, the inverting half and the non-inverting half. Splitting an amplifier into two allows for the non-inverting half to be “shared” with several inverting halves, reducing the die area required for each individual amplifier. This allows for an increased number of amplifiers to be embedded into the same chip; in this case, 32 amplifiers are able to fit in the same space as 17 traditional 5-transistor operational amplifiers. The amplifiers exhibit low mismatch of 1.65 mV across the entire 1024 amplifier array, as well as high linearity in transimpedance gain. The technique will enable larger arrays to be created in future designs to allow electrophysiologists, among others, access to even higher-throughput measurement tools. 
    more » « less
  5. The Quantum Instrumentation Control Kit (QICK) is a standalone open-source qubit controller that was first introduced in 2022. In this follow-up work, we present recent upgrades to the QICK and the experimental use cases they uniquely enabled for superconducting qubit systems. These include multiplexed signal generation and readout, mixer-free readout, predistorted fast flux pulses, and phase-coherent pulses for parametric operations, including high-fidelity parametric entangling gates. We explain in detail how the QICK was used to enable these experiments. 
    more » « less