skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiomics Analyses of Peripheral Artery Disease Muscle Biopsies
Peripheral artery disease (PAD) affects 10 million people in the United States and >230 million worldwide.1,2 It is associated with impaired vascular perfusion to the lower extremities, leading to limbthreatening amputation in severe cases of critical limb ischemia. Patients with PAD have an inferior prognosis and reduced limb function, when compared with patients without PAD.3 Very few effective therapies have been identified, in part, because the key biologic pathways associated with functional impairment remain unclear. Current treatments include supervised and home-based walking exercise to improve the mobility in patients with PAD.4,5 A better understanding of the underlying pathological mechanisms of skeletal muscle damage underlying PAD may help identify new therapeutic opportunities  more » « less
Award ID(s):
2227614
PAR ID:
10481587
Author(s) / Creator(s):
; ;
Editor(s):
Jane E. Freedman
Publisher / Repository:
Lippincott Williams & Wilkins
Date Published:
Journal Name:
Circulation Research
Volume:
132
Issue:
11
ISSN:
0009-7330
Page Range / eLocation ID:
1444 to 1446
Subject(s) / Keyword(s):
Editorial chronic limb-threatening ischemia gene expression profiling peripheral arterial disease proteomics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Prior diagnosis of heart failure (HF) is associated with increased length of hospital stay (LOS) and mortality from COVID-19. Associations between substance use, venous thromboembolism (VTE) or peripheral arterial disease (PAD) and its effects on LOS or mortality in patients with HF hospitalised with COVID-19 remain unknown. Objective This study identified risk factors associated with poor in-hospital outcomes among patients with HF hospitalised with COVID-19. Methods Case–control study was conducted of patients with prior diagnosis of HF hospitalised with COVID-19 at an academic tertiary care centre from 1 January 2020 to 28 February 2021. Patients with HF hospitalised with COVID-19 with risk factors were compared with those without risk factors for clinical characteristics, LOS and mortality. Multivariate regression was conducted to identify multiple predictors of increased LOS and in-hospital mortality in patients with HF hospitalised with COVID-19. Results Total of 211 patients with HF were hospitalised with COVID-19. Women had longer LOS than men (9 days vs 7 days; p<0.001). Compared with patients without PAD or ischaemic stroke, patients with PAD or ischaemic stroke had longer LOS (7 days vs 9 days; p=0.012 and 7 days vs 11 days, p<0.001, respectively). Older patients (aged 65 and above) had increased in-hospital mortality compared with younger patients (adjusted OR: 1.04; 95% CI 1.00 to 1.07; p=0.036). Prior diagnosis of VTE increased mortality more than threefold in patients with HF hospitalised with COVID-19 (adjusted OR: 3.33; 95% CI 1.29 to 8.43; p=0.011). Conclusion Vascular diseases increase LOS and mortality in patients with HF hospitalised with COVID-19. 
    more » « less
  2. Isenberg, Jeffrey S (Ed.)
    Different levels of arterial occlusive disease (aortoiliac, femoropopliteal, multi-level disease) can produce claudication symptoms in different leg muscle groups (buttocks, thighs, calves) in patients with peripheral artery disease (PAD). We tested the hypothesis that different locations of occlusive disease uniquely affect the muscles of PAD legs and produce distinctive patterns in the way claudicating patients walk. Ninety-seven PAD patients and 35 healthy controls were recruited. PAD patients were categorized to aortoiliac, femoropopliteal and multi-level disease groups using computerized tomographic angiography. Subjects performed walking trials both pain-free and during claudication pain and joint kinematics, kinetics, and spatiotemporal parameters were calculated to evaluate the net contribution of the calf, thigh and buttock muscles. PAD patients with occlusive disease affecting different segments of the arterial tree (aortoiliac, femoropopliteal, multi-level disease) presented with symptoms affecting different muscle groups of the lower extremity (calves, thighs and buttocks alone or in combination). However, no significant biomechanical differences were found between PAD groups during the pain-free conditions with minimal differences between PAD groups in the claudicating state. All statistical differences in the pain-free condition occurred between healthy controls and one or more PAD groups. A discriminant analysis function was able to adequately predict if a subject was a control with over 70% accuracy, but the function was unable to differentiate between PAD groups. In-depth gait analyses of claudicating PAD patients indicate that different locations of arterial disease produce claudication symptoms that affect different muscle groups across the lower extremity but impact the function of the leg muscles in a diffuse manner generating similar walking impairments. 
    more » « less
  3. Abstract Background Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation. Main body Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics. Conclusion Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of “superbugs” vital to global health. 
    more » « less
  4. Alan Dardik, MD (Ed.)
    Objective: Lifestyle choices such as tobacco and e-cigarette use are a risk factor for peripheral arterial disease (PAD) and may influence therapeutic outcomes. The effect of chronic nicotine exposure on the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) was assessed in a murine model of PAD. Methods: Mice were exposed to nicotine or phosphate-buffered saline (PBS) for 28 days, followed by induction of limb ischemia and iPSC-EC transplantation. Cells were injected into the ischemic limb immediately after induction of hindlimb ischemia and again 7 days later. Limb perfusion was assessed by laser Doppler spectroscopy, and transplant cell survival was monitored for 14 days afterward using bioluminescence imaging, followed by histological analysis of angiogenesis. Results: Transplant cell retention progressively decreased over time after implantation based on bioluminescence imaging, and there were no significant differences in cell survival between mice with chronic exposure to nicotine or PBS. However, compared with mice without nicotine exposure, mice with prior nicotine exposure had had an impaired therapeutic response to iPSC-EC therapy based on decreased vascular perfusion recovery. Mice with nicotine exposure, followed by cell transplantation, had significantly lower mean perfusion ratio after 14 days (0.47 ± 0.07) compared with mice undergoing cell transplantation without prior nicotine exposure (0.79 ± 0.11). This finding was further supported by histological analysis of capillary density, in which animals with prior nicotine exposure had a lower capillary density (45.9 ± 4.7 per mm2) compared with mice without nicotine exposure (66.5 ± 8.1 per mm2). Importantly, the ischemic limbs mice exposed to nicotine without cell therapy also showed significant impairment in perfusion recovery after 14 days, compared with mice that received PBS + iPSC-EC treatment. This result suggested that mice without chronic nicotine exposure could respond to iPSC-EC implantation into the ischemic limb by inducing perfusion recovery, whereas mice with chronic nicotine exposure did not respond to iPSC-EC therapy. Conclusions: Together, these findings show that chronic nicotine exposure adversely affects the ability of iPSC-EC therapy to promote vascular perfusion recovery and angiogenesis in a murine PAD model. 
    more » « less
  5. Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case–control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1–5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0–73.5) minutes. A median false alarm rate of 1.1 (IQR. 0–2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0–58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness. 
    more » « less