skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Twisted-bilayer FeSe and the Fe-based superlattices
We derive BM-like continuum models for the bands of superlattice heterostructures formed out of Fe-chalcogenide monolayers: (I) a single monolayer experiencing an external periodic potential, and (II) twisted bilayers with long-range moire tunneling. A symmetry derivation for the inter-layer moire tunnelling is provided for both the\Gamma Γ andM M high-symmetry points. In this paper, we focus on moire bands formed from hole-band maxima centered on\Gamma Γ , and show the possibility of moire bands withC=0 C = 0 or±1 ± 1 topological quantum numbers without breaking time-reversal symmetry. In theC=0 C = 0 region for\theta→0 θ 0 (and similarly in the limit of large superlattice period for I), the system becomes a square lattice of 2D harmonic oscillators. We fit our model to FeSe and argue that it is a viable platform for the simulation of the square Hubbard model with tunable interaction strength.  more » « less
Award ID(s):
1916958
PAR ID:
10481945
Author(s) / Creator(s):
;
Publisher / Repository:
SciPost Foundation
Date Published:
Journal Name:
SciPost Physics
Volume:
15
Issue:
3
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ a j , 1 x 1 + + a j , k x k = 0 for$$j=1,\dots ,m$$ j = 1 , , m with coefficients$$a_{j,i}\in \mathbb {F}_p$$ a j , i F p . Suppose that$$k\ge 3m$$ k 3 m , that$$a_{j,1}+\dots +a_{j,k}=0$$ a j , 1 + + a j , k = 0 for$$j=1,\dots ,m$$ j = 1 , , m and that every$$m\times m$$ m × m minor of the$$m\times k$$ m × k matrix$$(a_{j,i})_{j,i}$$ ( a j , i ) j , i is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ A F p n of size$$|A|> C\cdot \Gamma ^n$$ | A | > C · Γ n contains a solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ x 1 , , x k A are all distinct. Here,Cand$$\Gamma $$ Γ are constants only depending onp,mandksuch that$$\Gamma Γ < p . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ x 1 , , x k in the solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ x 1 , , x k are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments. 
    more » « less
  2. Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ N = Z nucleus$$^{24}$$ 24 Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ 24 Mg($$\gamma ,\gamma ^{\prime }$$ γ , γ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ J π = 1 - , four$$J^{\pi }=1^+$$ J π = 1 + , and six$$J^{\pi }=2^+$$ J π = 2 + states in$$^{24}$$ 24 Mg. De-excitation$$\gamma $$ γ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ γ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ B ( M 1 ) = 2.7 ( 3 ) μ N 2 is observed, but this$$N=Z$$ N = Z nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ B ( E 1 ) 0.61 × 10 - 3  e$$^2 \, $$ 2 fm$$^2$$ 2 . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ B ( Π 1 , 1 i π 2 1 + ) / B ( Π 1 , 1 i π 0 gs + ) branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ 24 Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ ρ 2 ( E 0 , 0 2 + 0 gs + ) strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ B ( M 1 , 1 + 0 2 + ) / B ( M 1 , 1 + 0 gs + ) branching ratio of the 10.712 MeV$$1^+$$ 1 + level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ Δ β 2 2 between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ 0 2 + level. 
    more » « less
  3. Abstract By the Aharonov–Casher theorem, the Pauli operatorPhas no zero eigenvalue when the normalized magnetic flux$$\alpha $$ α satisfies$$|\alpha |<1$$ | α | < 1 , but it does have a zero energy resonance. We prove that in this case a Lieb–Thirring inequality for the$$\gamma $$ γ -th moment of the eigenvalues of$$P+V$$ P + V is valid under the optimal restrictions$$\gamma \ge |\alpha |$$ γ | α | and$$\gamma >0$$ γ > 0 . Besides the usual semiclassical integral, the right side of our inequality involves an integral where the zero energy resonance state appears explicitly. Our inequality improves earlier works that were restricted to moments of order$$\gamma \ge 1$$ γ 1
    more » « less
  4. It has recently been understood that the complete global symmetry of finite group topological gauge theories contains the structure of a higher-group. Here we study the higher-group structure in (3+1)D\mathbb{Z}_2 2 gauge theory with an emergent fermion, and point out that pumping chiralp+ip p + i p topological states gives rise to a\mathbb{Z}_{8} 8 0-form symmetry with mixed gravitational anomaly. This ordinary symmetry mixes with the other higher symmetries to form a 3-group structure, which we examine in detail. We then show that in the context of stabilizer quantum codes, one can obtain logical CCZ and CS gates by placing the code on a discretization ofT^3 T 3 (3-torus) andT^2 \rtimes_{C_2} S^1 T 2 C 2 S 1 (2-torus bundle over the circle) respectively, and pumpingp+ip p + i p states. Our considerations also imply the possibility of a logicalT T gate by placing the code on\mathbb{RP}^3 3 and pumping ap+ip p + i p topological state. 
    more » « less
  5. Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ T in$$U\subset \mathbf {R}^{2+n}$$ U R 2 + n with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ , where$$Q\in \mathbf {N} \setminus \{0\}$$ Q N { 0 } and$$\Gamma $$ Γ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ q Γ is a point where the density of$$T$$ T is strictly below$$\frac{Q+1}{2}$$ Q + 1 2 , then the current is regular at$$q$$ q . The regularity is understood in the following sense: there is a neighborhood of$$q$$ q in which$$T$$ T consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ Γ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ Q = 1 . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ Ω R 2 + n is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ Γ Ω a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ T with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ is regular in a neighborhood of $$\Gamma $$ Γ
    more » « less