skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Photoluminescence from InSb1−xBix alloys at extended wavelengths on InSb
The incorporation of dilute concentrations of bismuth into traditional III–V alloys produces significant reductions in bandgap energy presenting unique opportunities in strain and bandgap engineering. However, the disparity between the ideal growth conditions for the host matrix and those required for substitutional bismuth incorporation has caused the material quality of these III–V–Bi alloys to lag behind that of conventional III–V semiconductors. InSb1−xBix, while experimentally underexplored, is a promising candidate for high-quality III–V–Bi alloys due to the relatively similar ideal growth temperatures for InSb and III–Bi materials. By identifying a highly kinetically limited growth regime, we demonstrate the growth of high-quality InSb1−xBix by molecular beam epitaxy. X-ray diffraction and Rutherford backscattering spectrometry (RBS) measurements of the alloy's bismuth concentration, coupled with smooth surface morphologies as measured by atomic force microscopy, suggest unity-sticking bismuth incorporation for a range of bismuth concentrations from 0.8% to 1.5% as measured by RBS. In addition, the first photoluminescence was observed from InSb1−xBix and demonstrated wavelength extension up to 7.6 μm at 230 K, with a bismuth-induced bandgap reduction of ∼29 meV/% Bi. Furthermore, we report the temperature dependence of the bandgap of InSb1−xBix and observed behavior consistent with that of a traditional III–V alloy. The results presented highlight the potential of InSb1−xBix as an alternative emerging candidate for accessing the longwave-infrared.  more » « less
Award ID(s):
1926187
PAR ID:
10483210
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
19
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semiconductors such as InAs with high dopant concentrations have a variety of applications, including as components of mid-infrared optoelectronic devices. Unfortunately, growth of these materials by molecular beam epitaxy is challenging, requiring high growth rates and low growth temperatures. We show that the use of a bismuth surfactant improves silicon incorporation into InAs while simultaneously reducing the optical scattering rate, increasing the carrier mobility, reducing surface roughness, and enabling growth at higher substrate temperatures and slower growth rates. We explain our findings using microscopic theories of dopant segregation and defect formation in III-V materials. 
    more » « less
  2. Abstract Bismuth telluride is the working material for most Peltier cooling devices and thermoelectric generators. This is because Bi2Te3(or more precisely its alloys with Sb2Te3for p‐type and Bi2Se3for n‐type material) has the highest thermoelectric figure of merit,zT, of any material around room temperature. Since thermoelectric technology will be greatly enhanced by improving Bi2Te3or finding a superior material, this review aims to identify and quantify the key material properties that make Bi2Te3such a good thermoelectric. The largezTcan be traced to the high band degeneracy, low effective mass, high carrier mobility, and relatively low lattice thermal conductivity, which all contribute to its remarkably high thermoelectric quality factor. Using literature data augmented with newer results, these material parameters are quantified, giving clear insight into the tailoring of the electronic band structure of Bi2Te3by alloying, or reducing thermal conductivity by nanostructuring. For example, this analysis clearly shows that the minority carrier excitation across the small bandgap significantly limits the thermoelectric performance of Bi2Te3, even at room temperature, showing that larger bandgap alloys are needed for higher temperature operation. Such effective material parameters can also be used for benchmarking future improvements in Bi2Te3or new replacement materials. 
    more » « less
  3. We investigate the surface morphologies of two series of homoepitaxial GaSb(100) thin films grown on GaSb(100) substrates by molecular beam epitaxy in a Veeco GENxplor system. The first series was grown at temperatures ranging from 290 to 490°C and serves as a control. The second series was grown using the same growth parameters with bismuth used as a surfactant during growth. We compared the two series to examine the impacts of bismuth over the range of growth temperatures on the GaSb surface morphologies using atomic force microscopy and the film properties using Raman spectroscopy and scanning electron microscopy. High-resolution x-ray diffraction was performed to confirm that bismuth was not incorporated into the films. We found that the morphological evolution of the GaSb series grown without bismuth is consistent with the standard surface nucleation theory and identified the 2D-3D transition temperature as close to 290° C. In contrast, the presence of a Bi surfactant during growth was found to significantly alter the surface morphology and prevent undesired 3D islands at low temperatures. We also observed a preference for hillocks over step morphology at high growth temperatures, antistep bunching effects at intermediate temperatures, and the evolution from step-meandering to mound morphologies at low temperatures. This morphological divergence from the first series indicates that bismuth significantly increases in the 2D Erlich–Schwöebel potential barrier of the atomic terraces, inducing an uphill adatom flux that can smoothen the surface. Our findings demonstrate that bismuth surfactant can improve the surface morphology and film structure of low-temperature grown GaSb. Bismuth surfactant may also improve other homoepitaxial III-V systems grown in nonideal conditions. 
    more » « less
  4. Abstract This study presents the first report on patterned nanowires (NWs) of dilute nitride GaAsSbN on p-Si (111) substrates by self-catalyzed plasma-assisted molecular beam epitaxy. Patterned NW array with GaAsSbN of Sb composition of 3% as a stem provided the best yield of vertical NWs. Large bandgap tuning of ~ 75 meV, as ascertained from 4 K photoluminescence (PL), over a pitch length variation of 200–1200 nm has been demonstrated. Pitch-dependent axial and radial growth rates show a logistic sigmoidal growth trend different from those commonly observed in other patterned non-nitride III–V NWs. The sigmoidal fitting provides further insight into the PL spectral shift arising from differences in Sb and N incorporation from pitch induced variation in secondary fluxes. Results indicate that sigmoidal fitting can be a potent tool for designing patterned NW arrays of optimal pitch length for dilute nitrides and other highly mismatched alloys and heterostructures. 
    more » « less
  5. Researchers have been aggressively investigating group-IV (Ge, SiGeSn, GeSn) optoelectronic materials to realize tunable wavelength lasers, photodetectors, and transistors. By exploiting strain and bandgap engineering of these materials via choice of substrate orientation and intelligent buffer engineering as well as precise control of Sn alloy composition during material synthesis, it will offer widespread device applications. There is an opportunity to improve the device-level quality of GeSn material systems along with higher Sn incorporation that face growth challenges during epitaxy. The current research work presents the substrate orientation and misorientation (100)/2˚, (100)/6˚, (110), (111) mediated epitaxial GeSn and Ge optoelectronic materials synthesized via MBE and analyzed using several analytical tools. X-ray analysis demonstrated high quality GeSn materials with less broadening and good symmetricity on (100) compared to (110) GeSn materials. Minority carrier lifetimes of these GeSn epilayers were extracted as > 400 ns for the (100) substrate misoriented by 6˚ towards [110] direction. Raman spectroscopy measurements were performed to study the vibrational properties, where the LO phonon wavenumber shifts at ωLO = 301.11 ± 0.8 cm¬–1 from (100)/2˚, (100)/6˚ and (110) oriented GeSn epilayers that were synthesized in equivalent growth conditions. Cross-sectional TEM of (100)/2˚ GeSn sample was performed that revealed good quality GeSn material on GaAs. Elimination of the interfaced electronic dipole charge effects, that destabilize the group-IV/group III-V heterointerface and further layer growths, is attributed to aid in achieving superior quality GeSn epitaxial materials over a (100) substrate that is misoriented by 6˚ towards the [110] direction. This substrate offcut will enable to annihilate antiphase domains due to polar-on-non-polar epitaxial growth, which further reduce non-radiative recombination centers in GeSn material. Hence, growth of GeSn material on misoriented (100) substrate offers two-fold benefits: (i) reduced active defects at the GeSn/III-V heterointerface, and (ii) self-annihilation of the antiphase domain boundaries for enhancing the efficiency of optical devices. 
    more » « less