Bi2Te3 is a well-known thermoelectric material that was first investigated in the 1960s, optimized over decades, and is now one of the highest performing room-temperature thermoelectric materials to-date. Herein, we report on the colloidal synthesis, growth mechanism, and thermoelectric properties of Bi2Te3 nanoplates with a single nanopore in the center. Analysis of the reaction products during the colloidal synthesis reveals that the reaction progresses via a two-step nucleation and epitaxial growth: first of elemental Te nanorods and then the binary Bi2Te3 nanoplate growth. The rates of epitaxial growth can be controlled during the reaction, thus allowing the formation of a single nanopore in the center of the Bi2Te3 nanoplates. The size of the nanopore can be controlled by changing the pH of the reaction solution, where larger pores with diameter of similar to 50 nm are formed at higher pH and smaller pores with diameter of similar to 16 nm are formed at lower pH. We propose that the formation of the single nanopore is mediated by the Kirkendall effect and thus the reaction conditions allow for the selective control over pore size. Nanoplates have well-defined hexagonal facets as seen in the scanning and transmission electron microscopy images. The single nanopores have a thin amorphous layer at the edge, revealed by transmission electron microscopy. Thermoelectric properties of the pristine and single-nanopore Bi2Te3 nanoplates were measured in the parallel and perpendicular directions. These properties reveal strong anisotropy with a significant reduction to thermal conductivity and increased electrical resistivity in the perpendicular direction due to the higher number of nanoplate and nanopore interfaces. Furthermore, Bi2Te3 nanoplates with a single nanopore exhibit ultralow lattice thermal conductivity values, reaching similar to 0.21 Wm(-1)K(-1) in the perpendicular direction. The lattice thermal conductivity was found to be systematically lowered with pore size, allowing for the realization of a thermoelectric figure of merit, zT of 0.75 at 425 K for the largest pore size.
more »
« less
High Thermoelectric Performance in 2D Sb 2 Te 3 and Bi 2 Te 3 Nanoplate Composites Enabled by Energy Carrier Filtering and Low Thermal Conductivity
Thermoelectrics are an important class of materials with great potential in alternative energy applications. In this study, two-dimensional (2D) nanoplates of the layered chalcogenides, Sb2Te3 and Bi2Te3, are synthesized and composites of the two are investigated for their thermoelectric properties. The two materials, Sb2Te3 and Bi2Te3, were synthesized as hexagonal, 2D nanoplates via a colloidal polyol route. The as-synthesized Sb2Te3 and Bi2Te3 vary drastically from one another in their lateral and vertical dimensions as revealed by scanning electron microscopy and atomic force microscopy. The single crystalline nanoplate nature is deduced by high-resolution transmission electron microscopy and selected area electron diffraction. Nanoplates have well-defined hexagonal facets as seen in the scanning and transmission electron microscopy images. The nanoplates were consolidated as an anisotropic nanostructured pellet via spark plasma sintering. Preferred orientation observed in the powder X-ray diffraction pattern and scanning electron microscopy images of the fractured pellets confirm the anisotropic structure of the nanoplates. Thermoelectric properties in the parallel and perpendicular directions were measured, revealing strong anisotropy with a significant reduction to thermal conductivity in the perpendicular direction due to increased phonon scattering at nanoplate interfaces. All compositions, except that of the 25% Bi2Te3 nanoplate composite, behave as degenerate semiconductors with increasing electrical resistivity as the temperature increases. The Seebeck coefficient is also increased dramatically in the nanocomposites, the highest reaching 210 μV/K for 15% Bi2Te3. The increase in Seebeck is attributed to energy carrier filtering at the nanoplate interfaces. Overall, these enhanced thermoelectric properties lead to a drastic increase in the thermoelectric performance in the perpendicular direction, with zT ∼ 1.26, for the 15% Bi2Te3 nanoplate composite at 450 K.
more »
« less
- Award ID(s):
- 2001156
- PAR ID:
- 10483525
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Applied Electronic Materials
- Edition / Version:
- ASAP
- Volume:
- xx
- Issue:
- xxx
- ISSN:
- 2637-6113
- Page Range / eLocation ID:
- xxxx-xxxx
- Subject(s) / Keyword(s):
- nanocomposites thermoelectrics Bi2Te3 Sb2Te3 energy filtering 2D nanoplates colloidal synthesis
- Format(s):
- Medium: X Size: 8.2 MB Other: pdf
- Size(s):
- 8.2 MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
N/A (Ed.)Yb14ZnSb11 is one of the newest additions to the high-performance Yb14MSb11 (M = Mn, Mg, and Zn) family of p type high-temperature thermoelectric materials and shows promise for forming passivating oxide coatings. Work on the oxidation of rare earth (RE)-substituted Yb14−xRExMnSb11 single crystals suggested that substituting late RE elements may form more stable passivation oxide coatings. Yb14−xLuxZnSb11 (x = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7) samples were synthesized, and Lu-substitution’s effects on thermoelectric and oxidation properties are investigated. The solubility of Lu within the system was found to be quite low with xmax ∼ 0.3; samples with x > 0.3 contained impurities of LuSb. Goldsmid−Sharp band gap estimations show that introducing Lu reduces the apparent band gap. Because of this, the Lu-substituted samples show a reduction in the maximum Seebeck coefficient, decreasing the high-temperature zT. This contrasts with the impact of Lu3+ substitution in Yb14MnSb11, where the addition of Lu3+ for Yb2+ increases resistivity and the Seebeck coefficient. Oxidation of the x = 0.3 solid solution was studied by thermogravimetric-differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy−energy-dispersive spectroscopy, and optical images. The samples show no mass gain before 785 K, and ensuing oxidation reactions are proposed. At the highest temperatures, significant amounts of Yb14−xLuxZnSb11 remained beneath an oxide coating, suggesting that passivation may be achievable in oxygen environments.more » « less
-
The ternary phase, Yb14CdSb11, has been synthesized by flux and polycrystalline methods. The crystal structure is determined via single-crystal X-ray diffraction, revealing that it crystallizes in the Ca14AlSb11 structure type (I41/acd space group with unit cell parameters of a = 16.5962(2) & Aring; and c = 22.1346(5) & Aring;, 90 K, Z = 8, R1 = 2.65%, and wR2 = 4.58%). The polycrystalline form of the compound is synthesized from a stoichiometric reaction of Yb4Sb3, CdSb, Yb, and Sb. The elemental composition is confirmed using scanning electron microscopy and energy-dispersive spectroscopy, and phase purity is verified by powder X-ray diffraction. Thermoelectric measurements, including resistivity, Seebeck coefficient, thermal conductivity, Hall carrier concentration, and Hall mobility, are conducted from 300 to 1273 K. Yb14CdSb11 exhibits a peak zT = 0.90 at 1200 K. Carrier concentration and Hall mobility range from 6.99 x 1020-1.01 x 1021 cm-3 and 4.45-9.35 x 10-1 cm2 V-1 s-1, respectively. This carrier concentration is lower than that reported for the Zn or Mn analogs leading to a lower thermoelectric figure of merit at high temperatures. However, with appropriate doping, this phase should also be a promising p-type candidate for high-temperature energy conversion applications.more » « less
-
Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi 2 Te 3 , and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi 2 Te 3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices.more » « less
-
null (Ed.)Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics.more » « less
An official website of the United States government

