Motivated by the need for accurate determination of wall shear stress from profile measurements in turbulent boundary layer flows, the total shear stress balance is analysed and reformulated using several well-established semi-empirical relations. The analysis highlights the significant effect that small pressure gradients can have on parameters deduced from data even in nominally zero pressure gradient boundary layers. Using the comprehensive shear stress balance together with the log-law equation, it is shown that friction velocity, roughness length and zero-plane displacement can be determined with only velocity and turbulent shear stress profile measurements at a single streamwise location for nominally zero pressure gradient turbulent boundary layers. Application of the proposed analysis to turbulent smooth- and rough-wall experimental data shows that the friction velocity is determined with accuracy comparable to force balances (approximately 1 %–4 %). Additionally, application to boundary layer data from previous studies provides clear evidence that the often cited discrepancy between directly measured friction velocities (e.g. using force balances) and those derived from traditional total shear stress methods is likely due to the small favourable pressure gradient imposed by a fixed cross-section facility. The proposed comprehensive shear stress analysis can account for these small pressure gradients and allows more accurate boundary layer wall shear stress or friction velocity determination using commonly available mean velocity and shear stress profile data from a single streamwise location.
more »
« less
A universal velocity transformation for boundary layers with pressure gradients
The logarithmic law of the wall does not capture the mean flow when a boundary layer is subjected to a strong pressure gradient. In such a boundary layer, the mean flow is affected by the spatio-temporal history of the imposed pressure gradient; and accounting for history effects remains a challenge. This work aims to develop a universal mean flow scaling for boundary layers subjected to arbitrary adverse or/and favourable pressure gradients. We derive from the Navier–Stokes equation a velocity transformation that accounts for the history effects and maps the mean flow to the canonical law of the wall. The transformation is tested against channel flows with a suddenly imposed adverse or favourable pressure gradient, boundary layer flows subjected to an adverse pressure gradient, and Couette–Poiseuille flows with a streamwise pressure gradient. It is found that the transformed velocity profiles follow closely the equilibrium law of the wall.
more »
« less
- Award ID(s):
- 2131942
- PAR ID:
- 10483541
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 970
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A transient stability flow analysis is performed using the unsteady laminar boundary layer equations. The flow dynamics are studied via the Navier–Stokes equations. In the case of external spatially developing flow, the differential equations are reduced via Prandtl or boundary-layer assumptions, consisting of continuity and momentum conservation equations. Prescription of streamwise pressure gradients (decelerating and accelerating flows) is carried out by an impulsively started Falkner–Skan (FS) or wedge-flow similarity flow solution in the case of flat plate or a Blasius solution for particular zero-pressure gradient case. The obtained mean streamwise velocity and its derivatives from FS flows are then inserted into the well-known Orr–Sommerfeld equation of small disturbances at different dimensionless times (τ). Finally, the corresponding eigenvalues are dynamically computed for temporal stability analysis. A finite difference algorithm is effectively applied to solve the Orr–Sommerfeld equations. It is observed that flow acceleration or favorable pressure gradients (FPGs) lead to a significantly shorter transient period before reaching steady-state conditions, as the developed shear layer is notably thinner compared to cases with adverse pressure gradients (APGs). During the transient phase (i.e., for τ<1), the majority of the flow modifications are confined to the innermost 20–25% of the boundary layer, in proximity to the wall. In the context of temporal flow stability, the magnitude of the pressure gradient is pivotal in determining the streamwise extent of the Tollmien–Schlichting (TS) waves. In highly accelerated laminar flows, these waves experience considerable elongation. Conversely, under the influence of a strong adverse pressure gradient, the characteristic streamwise length of the smallest unstable wavelength, which is necessary for destabilization via TS waves, is significantly reduced. Furthermore, flows subjected to acceleration (β > 0) exhibit a higher propensity to transition towards a more stable state during the initial transient phase. For instance, the time response required to reach the steady-state critical Reynolds number was approximately 1τ for β = 0.18 (FPG) and τ = 6.8 for β = −0.18 (APG).more » « less
-
An incoming canonical spatially developing turbulent boundary layer (SDTBL) over a 2-D curved hill is numerically investigated via the Reynolds-averaged Navier–Stokes (RANS) equations plus two eddy-viscosity models: the K−ω SST (henceforth SST) and the Spalart–Allmaras (henceforth SA) turbulence models. A spatially evolving thermal boundary layer has also been included, assuming temperature as a passive scalar (Pr = 0.71) and a turbulent Prandtl number, Prt, of 0.90 for wall-normal turbulent heat flux modeling. The complex flow with a combined strong adverse/favorable streamline curvature-driven pressure gradient caused by concave/convex surface curvatures has been replicated from wind-tunnel experiments from the literature, and the measured velocity and pressure fields have been used for validation purposes (the thermal field was not experimentally measured). Furthermore, direct numerical simulation (DNS) databases from the literature were also employed for the incoming turbulent flow assessment. Concerning first-order statistics, the SA model demonstrated a better agreement with experiments where the turbulent boundary layer remained attached, for instance, in Cp, Cf, and Us predictions. Conversely, the SST model has shown a slightly better match with experiments over the flow separation zone (in terms of Cp and Cf) and in Us profiles just upstream of the bubble. The Reynolds analogy, based on the St/(Cf/2) ratio, holds in zero-pressure gradient (ZPG) zones; however, it is significantly deteriorated by the presence of streamline curvature-driven pressure gradient, particularly due to concave wall curvature or adverse-pressure gradient (APG). In terms of second-order statistics, the SST model has better captured the positively correlated characteristics of u′ and v′ or positive Reynolds shear stresses ( > 0) inside the recirculating zone. Very strong APG induced outer secondary peaks in and turbulence production as well as an evident negative slope on the constant shear layer.more » « less
-
In this study, we conduct a parametric analysis to evaluate the sensitivities of wall-modeled large-eddy simulation (LES) with respect to subgrid-scale (SGS) models, mesh resolution, wall boundary conditions and mesh anisotropy. While such investigations have been conducted for attached/flat-plate flow configurations, systematic studies specifically targeting turbulent flows with separation are notably sparse. To bridge this gap, our study focuses on the flow over a two-dimensional Gaussian-shaped bump at a moderately high Reynolds number, which involves smooth-body separation of a turbulent boundary layer under pressure-gradient and surface- curvature effects. In the simulations, the no-slip condition at the wall is replaced by three different forms of boundary condition based on the thin boundary layer equations and the mean wall-shear stress from high-fidelity numerical simulation to avoid the additional complexity of modeling the wall-shear stress. Various statistics, including the mean separation bubble size, mean velocity profile, and dissipation from SGS model, are compared and analyzed. The results reveal that capturing the separation bubble strongly depends on the choice of SGS model. While simulations approach grid convergence with resolutions nearing those of wall-resolved LES meshes, above this limit, the LES predictions exhibit intricate sensitivities to mesh resolution. Furthermore, both wall boundary conditions and the anisotropy of mesh cells exert discernible impacts on the turbulent flow predictions, yet the magnitudes of these impacts vary based on the specific SGS model chosen for the simulation.more » « less
-
We develop a wall model for large-eddy simulation (LES) that takes into account various pressure-gradient effects using multi-agent reinforcement learning. The model is trained using low-Reynolds-number flow over periodic hills with agents distributed on the wall at various computational grid points. It utilizes a wall eddy-viscosity formulation as the boundary condition to apply the modeled wall shear stress. Each agent receives states based on local instantaneous flow quantities at an off-wall location, computes a reward based on the estimated wall-shear stress, and provides an action to update the wall eddy viscosity at each time step. The trained wall model is validated in wall-modeled LES of flow over periodic hills at higher Reynolds numbers, and the results show the effectiveness of the model on flow with pressure gradients. The analysis of the trained model indicates that the model is capable of distinguishing between the various pressure gradient regimes present in the flow. To further assess the robustness of the developed wall model, simulations of flow over the Boeing Gaussian bump are conducted at a Reynolds number of 2 million, based on the free-stream velocity and the bump width. The results of mean skin friction and pressure on the bump surface, as well as the velocity statistics of the flow field, are compared to those obtained from equilibrium wall model (EQWM) simulations and published experimental data sets. The developed wall model is found to successfully capture the acceleration and deceleration of the turbulent boundary layer on the bump surface, providing better predictions of skin friction near the bump peak and exhibiting comparable performance to the EQWM with respect to the wall pressure and velocity field. We also conclude that the subgrid-scale model is crucial to the accurate prediction of the flow field, in particular the prediction of separation.more » « less
An official website of the United States government

