skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Existence of Partially Quadratic Lyapunov Functions That Can Certify The Local Asymptotic Stability of Nonlinear Systems
— This paper proposes a method for certifying the local asymptotic stability of a given nonlinear Ordinary Differential Equation (ODE) by using Sum-of-Squares (SOS) programming to search for a partially quadratic Lyapunov Function (LF). The proposed method is particularly well suited to the stability analysis of ODEs with high dimensional state spaces. This is due to the fact that partially quadratic LFs are parametrized by fewer decision variables when compared with general SOS LFs. The main contribution of this paper is using the Center Manifold Theorem to show that partially quadratic LFs that certify the local asymptotic stability of a given ODE exist under certain conditions.  more » « less
Award ID(s):
1933243 1931270
PAR ID:
10483583
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the American Control Conference
ISSN:
0743-1619
ISBN:
979-8-3503-2806-6
Page Range / eLocation ID:
4130 to 4135
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Many dynamical systems described by nonlinear ODEs are unstable. Their associated solutions do not converge towards an equilibrium point, but rather converge towards some invariant subset of the state space called an attractor set. For a given ODE, in general, the existence, shape and structure of the attractor sets of the ODE are unknown. Fortunately, the sublevel sets of Lyapunov functions can provide bounds on the attractor sets of ODEs. In this paper we propose a new Lyapunov characterization of attractor sets that is well suited to the problem of finding the minimal attractor set. We show our Lyapunov characterization is non-conservative even when restricted to Sum-of-Squares (SOS) Lyapunov functions. Given these results, we propose a SOS programming problem based on determinant maximization that yields an SOS Lyapunov function whose \begin{document}$ 1 $$\end{document}$-sublevel set has minimal volume, is an attractor set itself, and provides an optimal outer approximation of the minimal attractor set of the ODE. Several numerical examples are presented including the Lorenz attractor and Van-der-Pol oscillator. 
    more » « less
  2. null (Ed.)
    Motivated by the fact that the gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs), here we derive an ODE representation of the accelerated triple momentum (TM) algorithm. For unconstrained optimization problems with strongly convex cost, the TM algorithm has a proven faster convergence rate than the Nesterov's accelerated gradient (NAG) method but with the same computational complexity. We show that similar to the NAG method, in order to accurately capture the characteristics of the TM method, we need to use a high-resolution modeling to obtain the ODE representation of the TM algorithm. We propose a Lyapunov analysis to investigate the stability and convergence behavior of the proposed high-resolution ODE representation of the TM algorithm. We compare the rate of the ODE representation of the TM method with that of the NAG method to confirm its faster convergence. Our study also leads to a tighter bound on the worst rate of convergence for the ODE model of the NAG method. In this paper, we also discuss the use of the integral quadratic constraint (IQC) method to establish an estimate on the rate of convergence of the TM algorithm. A numerical example verifies our results. 
    more » « less
  3. Non-asymptotic analysis of quasi-Newton methods have gained traction recently. In particular, several works have established a non-asymptotic superlinear rate of O((1/sqrt{t})^t) for the (classic) BFGS method by exploiting the fact that its error of Newton direction approximation approaches zero. Moreover, a greedy variant of BFGS was recently proposed which accelerates its convergence by directly approximating the Hessian, instead of the Newton direction, and achieves a fast local quadratic convergence rate. Alas, the local quadratic convergence of Greedy-BFGS requires way more updates compared to the number of iterations that BFGS requires for a local superlinear rate. This is due to the fact that in Greedy-BFGS the Hessian is directly approximated and the Newton direction approximation may not be as accurate as the one for BFGS. In this paper, we close this gap and present a novel BFGS method that has the best of both worlds in that it leverages the approximation ideas of both BFGS and GreedyBFGS to properly approximate the Newton direction and the Hessian matrix simultaneously. Our theoretical results show that our method outperforms both BFGS and Greedy-BFGS in terms of convergence rate, while it reaches its quadratic convergence rate with fewer steps compared to Greedy-BFGS. Numerical experiments on various datasets also confirm our theoretical findings. 
    more » « less
  4. Abstract We develop a version of the Kloosterman circle method with a bump function that is used to provide asymptotics for weighted representation numbers of nonsingular integral quadratic forms. Unlike many applications of the Kloosterman circle method, we explicitly state some constants in the error terms that depend on the quadratic form. This version of the Kloosterman circle method uses Gauss sums, Kloosterman sums, Salié sums, and a principle of nonstationary phase. We briefly discuss a potential application of this version of the Kloosterman circle method to a proof of a strong asymptotic local–global principle for certain Kleinian sphere packings. 
    more » « less
  5. This paper proposes a method to learn ap- proximations of missing Ordinary Differential Equations (ODEs) and states in physiological models where knowl- edge of the system’s relevant states and dynamics is in- complete. The proposed method augments known ODEs with neural networks (NN), then trains the hybrid ODE-NN model on a subset of available physiological measurements (i.e., states) to learn the NN parameters that approximate the unknown ODEs. Thus, this method can model an ap- proximation of the original partially specified system sub- ject to the constraints of known biophysics. This method also addresses the challenge of jointly estimating physio- logical states, NN parameters, and unknown initial condi- tions during training using recursive Bayesian estimation. We validate this method using two simulated physiolog- ical systems, where subsets of the ODEs are assumed to be unknown during the training and test processes. The proposed method almost perfectly tracks the ground truth in the case of a single missing ODE and state and performs well in other cases where more ODEs and states are missing. This performance is robust to input signal per- turbations and noisy measurements. A critical advantage of the proposed hybrid methodology over purely data-driven methods is the incorporation of the ODE structure in the model, which allows one to infer unobserved physiological states. The ability to flexibly approximate missing or inac- curate components in ODE models improves a significant modeling bottleneck without sacrificing interpretability. 
    more » « less