In this study, molecular beam epitaxially grown axially configured ensemble GaAsSb/GaAs separate absorption, charge, and multiplication (SACM) region-based nanowire avalanche photodetector device on non-patterned Si substrate is presented. Our device exhibits a low breakdown voltage ( V BR ) of ∼ −10 ± 2.5 V under dark, photocurrent gain ( M ) varying from 20 in linear mode to avalanche gain of 700 at V BR at a 1.064 μm wavelength. Positive temperature dependence of breakdown voltage ∼ 12.6 mV K −1 further affirms avalanche breakdown as the gain mechanism in our SACM NW APDs. Capacitance–voltage ( C – V ) and temperature-dependent noise characteristics also validated punch-through voltage ascertained from I – V measurements, and avalanche being the dominant gain mechanism in the APDs. The ensemble SACM NW APD device demonstrated a broad spectral room temperature response with a cut-off wavelength of ∼1.2 μm with a responsivity of ∼0.17–0.38 A W −1 at −3 V. This work offers a potential pathway toward realizing tunable nanowire-based avalanche photodetectors compatible with traditional Si technology.
more »
« less
GaAs/GaAsSb Core–Shell Configured Nanowire-Based Avalanche Photodiodes up to 1.3 μm Light Detection
We report the first study on a GaAs/GaAsSb core−shell (CS)-configured nanowire (NW)-based separate absorption, charge control, and multiplication region avalanche photodiode (APD) operating in the near-infrared (NIR) region. Heterostructure NWs consisted of GaAs and tunable band gap GaAs1−xSbx serving as the multiplication and absorption layers, respectively. A doping compensation of absorber material to boost material absorption, segment-wise annealing to suppress trap-assisted tunneling, and an intrinsic i-type and n-type combination of the hybrid axial core to suppress axial electric field are successfully adopted in this work to realize a room-temperature (RT) avalanche photodetection extending up to 1.3 μm. In an APD device operating at RT with a unity-gain responsivity of 0.2−0.25 A/W at ∼5 V, the peak gain of 160 @ 1064 nm and 18 V reverse bias, gain >50 @ 1.3 μm, are demonstrated. Thus, this work provides a foundation and prospects for exploiting greater freedom in NW photodiode design using hybrid axial and CS heterostructures.
more »
« less
- Award ID(s):
- 1832117
- PAR ID:
- 10484122
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- ACS Applied Nano Materials
- Volume:
- 6
- Issue:
- 7
- ISSN:
- 2574-0970
- Page Range / eLocation ID:
- 5093 to 5105
- Subject(s) / Keyword(s):
- core−shell nanowires, avalanche photodiodes, SAM-APD, GaAsSb, hybrid axial/CS NWs, near-infrared, photodetector, non-selective growth, ensemble nanowires, self-catalyzed, VLS/VS growth
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Growing interconnect bandwidth demand in large datacenters requires energy-efficient optical transceivers that operate with four-level pulse amplitude modulation (PAM4) to enable high per-wavelength data rates. Further increases in bandwidth density is possible by leveraging wavelength-division multiplexing (WDM), which optical link architectures based on silicon photonic microring modulators (MRMs) and drop filters inherently enable. This paper presents high-speed PAM4 transmitter and receiver front-ends implemented in a 28nm CMOS process that are co-designed with these silicon photonic optical devices to enable energy-efficient operation. The transmitter utilizes an optical digital-to-analog converter (DAC) approach with two PAM2 AC-coupled pulsed-cascode high-swing voltage-mode output stages to drive the MRM MSB/LSB segments. A 3.42Vppd output swing is achieved when operating at 80Gb/s PAM4 with an energy efficiency of 3.66pJ/bit. The receiver front-end interfaces with a silicon-germanium avalanche photodiode (APD) and utilizes a low-bandwidth input transimpedance amplifier followed by continuous-time linear equalizer and variable-gain amplifier stages. Biasing the APD to realize a gain of 2 allows for -7dBm optical modulation amplitude (OMA) sensitivity at 56Gb/s PAM4 with a BER=10-4 and an energy efficiency of 1.61pJ/bit. Experimental verification of the full PAM4 transceiver at 50Gb/s operation shows -4.66dBm OMA sensitivity at a BER~4x10-4.more » « less
-
Context . We implement an electron avalanche photodiode (e-APD) in the MIRC-X instrument, which is an upgrade of the six-telescope near-infrared imager MIRC, at the CHARA array. This technology should improve the sensitivity of near-infrared interferometry. Aims . We aim to characterize a near-infrared C-RED ONE camera from First Light Imaging (FLI) using an e-APD from Leonardo (previously SELEX). Methods . We first used the classical mean-variance analysis to measure the system gain and the amplification gain. We then developed a physical model of the statistical distribution of the camera output signal. This model is based on multiple convolutions of the Poisson statistic, the intrinsic avalanche gain distribution, and the observed distribution of the background signal. At low flux level, this model independently constrains the incident illumination level, the total gain, and the excess noise factor of the amplification. Results . We measure a total transmission of 48 ± 3% including the cold filter and the Quantum Efficiency. We measure a system gain of 0.49 ADU/e, a readout noise of 10 ADU, and amplification gains as high as 200. These results are consistent between the two methods and therefore validate our modeling approach. The measured excess noise factor based on the modeling is 1.47 ± 0.03, with no obvious dependency with flux level or amplification gain. Conclusions . The presented model allows the characteristics of the e-APD array to be measured at low flux level independently of a preexisting calibration. With < 0.3 electron equivalent readout noise at kilohertz frame rates, we confirm the revolutionary performances of the camera with respect to the PICNIC or HAWAII technologies. However, the measured excess noise factor is significantly higher than what is claimed in the literature (< 1.25), and explains why counting multiple photons remains challenging with this camera.more » « less
-
Single-photon avalanche diodes (SPADs) that are sensitive to photons in the Short-wave infrared and extended short-wave infrared (SWIR and eSWIR) spectra are important components for communication, ranging, and low-light level imaging. The high gain, low excess noise factor, and widely tunable bandgap of AlxIn1-xAsySb1-yavalanche photodiodes (APDs) make them a suitable candidate for these applications. In this work, we report single-photon-counting results for a separate absorption, charge, and multiplication (SACM) Geiger-mode SPAD within a gated-quenching circuit. The single-photon avalanche probabilities surpass 80% at 80 K, corresponding with single-photon detection efficiencies of 33% and 12% at 1.55 µm and 2 µm, respectively.more » « less
-
Chemicals are best recognized by their unique wavelength specific optical absorption signatures in the molecular fingerprint region from λ=3-15μm. In recent years, photonic devices on chips are increasingly being used for chemical and biological sensing. Silicon has been the material of choice of the photonics industry over the last decade due to its easy integration with silicon electronics as well as its optical transparency in the near-infrared telecom wavelengths. Silicon is optically transparent from 1.1 μm to 8 μm with research from several groups in the mid-IR. However, intrinsic material losses in silicon exceed 2dB/cm after λ~7μm (~0.25dB/cm at λ=6μm). In addition to the waveguiding core, an appropriate transparent cladding is also required. Available core-cladding choices such as Ge-GaAs, GaAs-AlGaAs, InGaAs-InP would need suspended membrane photonic crystal waveguide geometries. However, since the most efficient QCLs demonstrated are in the InP platform, the choice of InGaAs-InP eliminates need for wafer bonding versus other choices. The InGaAs-InP material platform can also potentially cover the entire molecular fingerprint region from λ=3-15μm. At long wavelengths, in monolithic architectures integrating lasers, detectors and passive sensor photonic components without wafer bonding, compact passive photonic integrated circuit (PIC) components are desirable to reduce expensive epi material loss in passive PIC etched areas. In this paper, we consider miniaturization of waveguide bends and polarization rotators. We experimentally demonstrate suspended membrane subwavelength waveguide bends with compact sub-50μm bend radius and compact sub-300μm long polarization rotators in the InGaAs/InP material system. Measurements are centered at λ=6.15μm for sensing ammoniamore » « less
An official website of the United States government

