skip to main content


This content will become publicly available on October 12, 2024

Title: Toward improved PVDF-BaTiO 3 composite dielectrics: mechanical activation of the filler versus filler content
Abstract

Barium titanate (BT) perovskite particles were surface modified by means of mechanical treatment and used as inorganic component in polyvinylidene fluoride (PVDF) based composites. The changes in electrical properties of the composite films with increasing in filler content were followed by dielectric spectroscopy, breakdown strength andD-Emeasurements. A comparison of the properties of the composites prepared with untreated and mechanically activated particles revealed that there is a significant difference in their performances at low filler concentrations (<20 wt%). Introduction of the surface modified ceramic particles into PVDF matrix led to an increase of the dielectric constant without affecting significantly the electrical breakdown strength. In contrast, when as received BT particles were used a filler, both dielectric constants and breakdown strengths of the composite films were lower than the corresponding values observed for the pure PVDF. At higher concentrations, however, the influence of pre-treatment of the filler on the effective electrical properties becomes less significant. The obtained results were discussed in terms of the pronounced crystallization of polarβandγcrystal phases of PVDF in the presence of surface modified BT fillers, which is confirmed by Raman spectroscopy.

 
more » « less
Award ID(s):
2101041
NSF-PAR ID:
10484529
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP publishing
Date Published:
Journal Name:
Physica Scripta
Volume:
98
Issue:
11
ISSN:
0031-8949
Page Range / eLocation ID:
115932
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer nanocomposites exhibit unique effective properties that do not follow conventional effective media approaches. The nanoparticle-polymer interphase has been shown to strongly influence the nanocomposites behavior due o its significant volume when the particles are nano-sized, affording an opportunity to tune the dielectric response of the resulting nanocomposite. In this study, we investigate the effects of TiO2 nanoparticles on the electrical properties and the charges distribution and transport in polydimethylsiloxane (PDMS) nanocomposites. Impedance spectroscopy shows suppression of interfacial Maxwell-Wagner-Sillars (MWS) polarization accompanied by a reduction in the low frequency dielectric permittivity and loss at high temperatures in the presence of the TiO2 nanoparticles. Thermally stimulated discharge current measurements confirm that the suppression of the interfacial polarization relaxations happens by redistributing or depleting the charges through the composite and hindering their mobility, potentially resulting in lower electrical conduction and higher breakdown strength. Although the model materials investigated here are TiO2 nanoparticles and Sylgard 184 PDMS, our findings can be extended to other nanoparticulate-filled elastomer composites to design lightweight dielectrics, actuators and sensors with improved capabilities. 
    more » « less
  2. ABSTRACT

    Herein, phase inversion poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) microporous membranes were prepared at various PMMA concentration by immersion precipitation method. Increment in the PMMA concentration has a significant influence in the PVDF membrane crystallinity, which is studied by differential scanning calorimeter, X‐ray diffractometer, and small‐angle X‐ray scattering analyses. Properties such as membrane bulk structure, porosity, hydrophilicity, mechanical stability, and water flux vary in terms of PMMA concentration. Porosity is increased, and tensile strength decreased when PMMA concentration is beyond 30 wt %. Thermodynamic instability during the liquid to solid phase separation and variation in the crystallinity has an intense effect on these membrane properties. Then, 70/30 blend membrane selected as optimum composition owing to the high porosity and pure water flux compared to other compositions. This membrane is modified with a composite filler derived from the graphene oxide and titanate crosslinked by chitosan. The antibacterial, antifouling, and bovine serum albumin separation studies reveal that the developed nanocomposite membrane is a potential candidate for the separation application. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,137, 48677.

     
    more » « less
  3. Abstract

    The quantum of research in the area of supercapacitors is typically focused on the electrode materials. As such, there are many opportunities for the optimization of the other components, such as the separators, to further increase the power, efficiency, and longevity of supercapacitors. To contribute to this field of research, we present an innovative alternative for the fabrication of separators; using polymer/ceramic composites (PCC) based on polyvinylidene fluoride (PVDF) and polypropylene (PPG) mixed with different alkaline earth metal‐based titanates (eg barium, calcium, and strontium). ThePCCseparators were prepared via phase inversion precipitation technique, a feasible and scalable method for the fabrication of these composites. Different additives were used to modulate the porosity and thus, improve the charge transfer rates. Then, a heating process ensured a uniform organization of the composites. Furthermore, we tested the effect of thermally annealing the ceramics on the separators’ performance. The precursor materials and thePCC's were extensively characterized by means of X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical, mechanical, and dielectric properties of thePCC's were measured and compared to common commercial separators used today. Results suggest that thermal treatment improves tensile strength of the separators by at least ca. 60% without compromising the similar electrochemical profile to the commercial separators (44.52 ± 2.82 Ω vs 67.65 ± 29.01 Ω). Lastly, all of the fabricatedPCC's showed higher dielectric constants (4.52 in average for the as prepared separators and 2.99 for the heatedPCC's) than the polymer based commercial separators (2.2).

     
    more » « less
  4. Electrochemical (EC) and photoelectrochemical (PEC) water treatment systems are gaining popularity, necessitating new electrode materials that offer reliable performance across diverse application platforms. For applications specifically targeting dilute chemical pollutants ( i.e. , parts-per-million concentrations or less), beneficial electrode properties include high surface area to overcome kinetic overpotential losses, low electrode areal electrical resistance, and high water permeability with sufficient mechanical strength for use in electroactive membrane-based treatment systems. Here, we used electrospinning to fabricate (photo)electrodes from carbon nanofibers (CNFs) containing titanium dioxide (TiO 2 ) nanoparticles. Optimal CNF/TiO 2 composites were electrochemically and photochemically active with a surface area of ∼50 m 2 g −1 and electrode areal resistance of 2.66 Ω cm 2 , values comparable to commercial carbon-based electrode materials ( e.g. , Kynol Activated Carbon Cloth). Transformation experiments with carbamazepine (CBZ), a recalcitrant organic contaminant, suggest CNF/TiO 2 electrodes function dually as sorbents, first binding CBZ prior to oxidation at positive applied potentials. Complete CBZ transformation was observed in both EC (dark) and PEC (UV light; 280 mW cm −2 ) systems over 90 minutes, with PEC systems exhibiting 1.5-fold higher transformation rates ( k obs ∼ 0.18 min −1 ) at +1.00 V ( vs. Ag/AgCl). Composite electrodes also exhibited stability across repeated use, yielding consistent current densities over five experimental cycles (120 min each) of CBZ transformation (0.25 ± 0.03 mA cm −2 ). Because of their high surface area, electrical conductivity, photoactivity, and electrochemical stability, these electrospun CNF/TiO 2 composites represent promising (photo)electrode alternatives for diverse EC and PEC applications. 
    more » « less
  5. null (Ed.)
    High permittivity polymer-ceramic nanocomposite dielectric films take advantage of the ease of flexibility in processing of polymers and the functionality of electroactive ceramic fillers. Hence, films like these may be applied to embedded energy storage devices for printed circuit electrical boards. However, the incompatibility of the hydrophilic ceramic filler and hydrophobic epoxy limit the filler concentration and therefore, dielectric permittivity of these materials. Traditionally, surfactants and core-shell processing of ceramic fillers are used to achieve electrostatic and steric stabilization for adequate ceramic particle distribution but, questions regarding these processes still remain. The purpose of this work is to understand the role of surfactant concentration ceramic particle surface morphology, and composite dielectric permittivity and conductivity. A comprehensive study of barium titanate-based epoxy nanocomposites was performed. Ethanol and 3-glycidyloxypropyltrimethoxysilan surface treatments were performed, where the best reduction in particle agglomeration, highest value of permittivity and the lowest value of loss were observed. The results demonstrate that optimization of coupling agent may lead to superior permittivity values and diminished losses that are ~2–3 times that of composites with non-optimized and traditional surfactant treatments. 
    more » « less