skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Background Material Identification Using a Soft Robot
Soft robotics is an emerging technology that provides robots with the ability to adapt to the environment and safely interact with it. Here, the ability of these robots to identify the surface of interaction is critical for grasping and locomotion tasks. This paper describes the capability of a four-limb soft robot that can identify background materials through the collection of reflection coefficients using an embedded antenna and machine learning techniques. The material of a soft-limb robot was characterized in terms of the relative permittivity and the loss tangent for the design of an antenna to collect reflection coefficients. A slot antenna was designed and embedded into a soft limb in order to extract five features in reflection coefficients including the resonant frequency, −3 dB bandwidth taken from the lowest S11, the value of the lowest S11, −3 dB bandwidth taken from the highest S11, and the number of resonant frequencies. A soft robot with the embedded antenna was tested on nine different background materials in an attempt to identify surrounding terrain information and a better robotic operation. The tested background materials included concrete, fabric, grass, gravel, metal, mulch, soil, water, and wood. The results showed that the robot was capable of distinguishing among the nine different materials with an average accuracy of 93.3% for the nine background materials using a bagged decision-tree-based ensemble method algorithm.  more » « less
Award ID(s):
1830432
PAR ID:
10485015
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Electronics
Volume:
13
Issue:
1
ISSN:
2079-9292
Page Range / eLocation ID:
78
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this article, a compact multiband antenna design and analysis is presented with a view of ensuring efficient uplink/downlink communications at the same time from a single antenna for CubeSat applications. This design shares the aperture of an S-band slot antenna to accommodate a square patch antenna operating in the X-band. Shared aperture antennas, along with an air gap and dielectric loading, provided good gain in both frequency bands. The S-band patch had an S11 = −10 dB bandwidth of 30 MHz (2013–2043 MHz, 1.5%), and the X-band antenna demonstrated a bandwidth of 210 MHz (8320–8530 MHz, 2.5%). The Axial Ratio (<3 dB) bandwidth of the slot antenna in the S-band is 7 MHz (2013–2020 MHz, 0.35%), and it is 67 MHz (8433–8500 MHz, 0.8%) in the case of patch antenna in the X-band. While the maximum gain in the S-band reached 7.7 dBic, in the X-band, the peak gain was 12.8 dBic. This performance comparison study shows that the antenna is advantageous in terms of high gain, maintains circular polarization over a wideband, and can replace two antennas needed in CubeSats for uplink/downlink, which essentially saves space. 
    more » « less
  2. A compact and planar imaging system was developed using a flexible polymer substrate that can distinguish subcutaneous tissue abnormalities, such as breast tumors, based on electromagnetic-wave interactions in materials where permittivity variations affect wave reflection. The sensing element is a tuned loop resonator operating in the industrial, scientific, and medical (ISM) band at 2.423 GHz, providing a localized high-intensity electric field that penetrates into tissues with sufficient spatial and spectral resolutions. The resonant frequency shifts and magnitudes of the reflection coefficients indicate the boundaries of abnormal tissues under the skin due to their high contrasts to normal tissues. The sensor was tuned to the desired resonant frequency with a reflection coefficient of −68.8 dB for a radius of 5.7 mm, with a tuning pad. Quality factors of 173.1 and 34.4 were achieved in simulations and measurements in phantoms. An image-processing method was introduced to fuse raster-scanned 9 × 9 images of resonant frequencies and reflection coefficients for image-contrast enhancement. The results showed a clear indication of the tumor’s location at a depth of 15 mm and the capability to identify two tumors both at the depth of 10 mm. The sensing element can be expanded to a four-element phased array for deeper field penetration. Field analysis showed the depths of −20 dB attenuation were improved from 19 to 42 mm, giving wider coverage in tissues at resonance. Results showed that a quality factor of 152.5 was achieved and a tumor could be identified at a depth of up to 50 mm. In this work, simulations and measurements were conducted to validate the concept, showing great potential for subcutaneous imaging in medical applications in a noninvasive, efficient, and lower-cost way. 
    more » « less
  3. This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands. 
    more » « less
  4. Here, we present a multimodal, lamprey-inspired, 3D printed soft fluidic robot/actuator based on an antagonistic pneunet architecture. The Pacific Lamprey is a unique fish which is able to climb wetted vertical surfaces using its suction-cup mouth and snake-like morphology. The continuum structure of these fish lends itself to soft robots, given their ability to form continuous bends. Additionally, the high gravimetric and volumetric power density attainable by soft actuators make them good candidates for climbing robots. Fluidic soft robots are often limited in the forces they can exert due to limitations on their actuation pressure. This actuator is able to operate at relatively high pressures (for soft robots) of 756 kPa (95 psig) with a −3 dB bandwidth of 2.23 Hz to climb at rates exceeding 18 cm/s. The robot is capable of progression on a vertical surface using a compliant microspine attachment as the functional equivalent of the lamprey’s more complex suction-cup mouth. The paper also presents the details of the 3D-printed manufacturing of this actuator/robot. 
    more » « less
  5. This paper demonstrates the design and implementation of two dual-polarized ultra-wideband antennas for radar ice sounding. The first antenna operates at UHF (600– 900 MHz). The second antenna operates at VHF (140–215 MHz). Each antenna element is composed of two orthogonal octagon-shaped dipoles, two inter-locked printed circuit baluns and an impedance matching network for each polarization. We built and tested one prototype antenna for each band and showed a VSWR of less than 2:1 at both polarizations over a fractional bandwidth exceeding 40 %. Our antennas display cross-polarization isolation larger than 30 dB, an E-plane 3-dB beamwidth of 69 degrees, and a gain of at least 4 dBi with a variation of ± 1 dB across the bandwidth. We demonstrate peak power handling capabilities of 400-W and 1000-W for the UHF and VHF bands, respectively. Our design flow allows for straightforward adjustment of the antenna dimensions to meet other bandwidth constraints. 
    more » « less