skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insight into cloud processes from unsupervised classification with a rotationally invariant autoencoder
Clouds play a critical role in the Earth's energy budget and their potential changes are one of the largest uncertainties in future climate projections. However, the use of satellite observations to understand cloud feedbacks in a warming climate has been hampered by the simplicity of existing cloud classification schemes, which are based on single-pixel cloud properties rather than utilizing spatial structures and textures. Recent advances in computer vision enable the grouping of different patterns of images without using human-predefined labels, providing a novel means of automated cloud classification. This unsupervised learning approach allows discovery of unknown climate-relevant cloud patterns, and the automated processing of large datasets. We describe here the use of such methods to generate a new AI-driven Cloud Classification Atlas (AICCA), which leverages 22 years and 800 terabytes of MODIS satellite observations over the global ocean. We use a rotation-invariant cloud clustering (RICC) method to classify those observations into 42 AI-generated cloud class labels at ~100 km spatial resolution. As a case study, we use AICCA to examine a recent finding of decreasing cloudiness in a critical part of the subtropical stratocumulus deck, and show that the change is accompanied by strong trends in cloud classes.  more » « less
Award ID(s):
1735359
PAR ID:
10486595
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Conference on Neural Information Processing -Machine Learning for Physical Science
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Atmospheric aerosols influence the Earth’s climate, primarily by affecting cloud formation and scattering visible radiation. However, aerosol-related physical processes in climate simulations are highly uncertain. Constraining these processes could help improve model-based climate predictions. We propose a scalable statistical framework for constraining the parameters of expensive climate models by comparing model outputs with observations. Using the C3.AI Suite, a cloud computing platform, we use a perturbed parameter ensemble of the UKESM1 climate model to efficiently train a surrogate model. A method for estimating a data-driven model discrepancy term is described. The strict bounds method is applied to quantify parametric uncertainty in a principled way. We demonstrate the scalability of this framework with 2 weeks’ worth of simulated aerosol optical depth data over the South Atlantic and Central African region, written from the model every 3 hr and matched in time to twice-daily MODIS satellite observations. When constraining the model using real satellite observations, we establish constraints on combinations of two model parameters using much higher time-resolution outputs from the climate model than previous studies. This result suggests that within the limits imposed by an imperfect climate model, potentially very powerful constraints may be achieved when our framework is scaled to the analysis of more observations and for longer time periods. 
    more » « less
  2. Abstract The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR) over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro- and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional means ∼20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical properties for future climate model development and climate projection. 
    more » « less
  3. Citizen science and artificial intelligence (AI) complement each other by harnessing the strengths of both human and machine capabilities. Citizen science generates terabytes of raw numerical, text, and image data, the analysis of which requires automated techniques to process in an efficient manner. Conversely, AI computer vision technology can require tens of thousands of images during the training process, and citizen science projects are well suited to provide large libraries of data. Herein, we describe how AI tools are being applied across the GLOBE Observer citizen science data ecosystem, where image recognition algorithms are supporting data ingest processes, protecting user privacy and improving data fidelity. GLOBE citizen science data has been used to develop automated data classification routines that enable information discovery of mosquito larvae and land cover labels. These advances position GLOBE citizen scientist data for discovery and use in environmental and health research, as well as by machine learning scientists working in the general field of GeoAI. 
    more » « less
  4. Abstract. Permafrost thaw has been observed at several locations across the Arctic tundra in recent decades; however, the pan-Arctic extent and spatiotemporal dynamics of thaw remains poorly explained. Thaw-induced differential ground subsidence and dramatic microtopographic transitions, such as transformation of low-centered ice-wedge polygons (IWPs) into high-centered IWPs can be characterized using very high spatial resolution (VHSR) commercial satellite imagery. Arctic researchers demand for an accurate estimate of the distribution of IWPs and their status across the tundra domain. The entire Arctic has been imaged in 0.5 m resolution by commercial satellite sensors; however, mapping efforts are yet limited to small scales and confined to manual or semi-automated methods. Knowledge discovery through artificial intelligence (AI), big imagery, and high performance computing (HPC) resources is just starting to be realized in Arctic science. Large-scale deployment of VHSR imagery resources requires sophisticated computational approaches to automated image interpretation coupled with efficient use of HPC resources. We are in the process of developing an automated Mapping Application for Permafrost Land Environment (MAPLE) by combining big imagery, AI, and HPC resources. The MAPLE uses deep learning (DL) convolutional neural nets (CNNs) algorithms on HPCs to automatically map IWPs from VHSR commercial satellite imagery across large geographic domains. We trained and tasked a DLCNN semantic object instance segmentation algorithm to automatically classify IWPs from VHSR satellite imagery. Overall, our findings demonstrate the robust performances of IWP mapping algorithm in diverse tundra landscapes and lay a firm foundation for its operational-level application in repeated documentation of circumpolar permafrost disturbances. 
    more » « less
  5. Changing atmospheric circulations shift global weather patterns and their extremes, profoundly affecting human societies and ecosystems. Studies using atmospheric reanalysis and climate model data indicate diverse circulation changes in recent decades but show discrepancies in magnitude and even direction, underscoring the urgent need for validation with independent, climate-quality measurements. Here we show statistically significant changes in tropospheric circulation over the past two decades using satellite-observed, height-resolved cloud motion vectors from the Multi-angle Imaging SpectroRadiometer (MISR). Upper tropospheric cloud motion speeds in the mid-latitudes have increased by up to about 4 m s−1 decade−1. This acceleration is primarily because of the strengthening of meridional flow, potentially indicating more poleward storm tracks or intensified extratropical cyclones. The Northern and Southern Hemisphere tropics shifted poleward at rates of 0.42 ± 0.22 and 0.02 ± 0.14° latitude decade−1 (95% confidence interval), respectively, whereas the corresponding polar fronts shifted at rates of 0.37 ± 0.31 and 0.31 ± 0.21° latitude decade−1. We also show that the widely used ERA5 reanalysis winds subsampled to the MISR are in good agreement with the climatological values and trends of the MISR but indicate probable ERA5 biases in the upper troposphere. These MISR-based observations provide critical benchmarks for refining reanalysis and climate models to advance our understanding of climate change impacts on cloud and atmospheric circulations. 
    more » « less