Abstract Cyber-enabled manufacturing systems are becoming increasingly data-rich, generating vast amounts of real-time sensor data for quality control and process optimization. However, this proliferation of data also exposes these systems to significant cyber-physical security threats. For instance, malicious attackers may delete, change, or replace original data, leading to defective products, damaged equipment, or operational safety hazards. False data injection attacks can compromise machine learning models, resulting in erroneous predictions and decisions. To mitigate these risks, it is crucial to employ robust data processing techniques that can adapt to varying process conditions and detect anomalies in real-time. In this context, the incremental machine learning (IML) approaches can be valuable, allowing models to be updated incrementally with newly collected data without retraining from scratch. Moreover, although recent studies have demonstrated the potential of blockchain in enhancing data security within manufacturing systems, most existing security frameworks are primarily based on cryptography, which does not sufficiently address data quality issues. Thus, this study proposes a gatekeeper mechanism to integrate IML with blockchain and discusses how this integration could potentially increase the data integrity of cyber-enabled manufacturing systems. The proposed IML-integrated blockchain can address the data security concerns from both intentional alterations (e.g., malicious tampering) and unintentional alterations (e.g., process anomalies and outliers). The real-world case study results show that the proposed gatekeeper integration algorithm can successfully filter out over 80% of malicious data entries while maintaining comparable classification performance to standard IML models. Furthermore, the integration of blockchain enables effective detection of tampering attempts, ensuring the trustworthiness of the stored information. 
                        more » 
                        « less   
                    
                            
                            Sensor Data Protection through Integration of Blockchain and Camouflaged Encryption in Cyber-physical Manufacturing Systems
                        
                    
    
            Abstract The advancement of sensing technology enables efficient data collection from manufacturing systems for monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However, the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2141184
- PAR ID:
- 10486922
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Computing and Information Science in Engineering
- ISSN:
- 1530-9827
- Page Range / eLocation ID:
- 1 to 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Sensor networks and IoT systems have been widely deployed in monitoring and controlling system. With its increasing utilization, the functionality and performance of sensor networks and their applications are not the only design aims; security issues in sensor networks attract more and more attentions. Security threats in sensor and its networks could be originated from various sectors: users in cyber space, security-weak protocols, obsolete network infrastructure, low-end physical devices, and global supply chain. In this work, we take one of the emerging applications, advanced manufacturing, as an example to analyze the security challenges in the sensor network. Presentable attacks—hardware Trojan attack, man-in-the-middle attack, jamming attack and replay attack—are examined in the context of sensing nodes deployed in a long-range wide-area network (LoRaWAN) for advanced manufacturing. Moreover, we analyze the challenges of detecting those attacks.more » « less
- 
            In this paper, we present the design and implementation of a cyber-physical security testbed for networked electric drive systems, aimed at conducting real-world security demonstrations. To our knowledge, this is one of the first security testbeds for networked electric drives, seamlessly integrating the domains of power electronics and computer science, and cybersecurity. By doing so, the testbed offers a comprehensive platform to explore and understand the intricate and often complex interactions between cyber and physical systems. The core of our testbed consists of four electric machine drives, meticulously configured to emulate small-scale but realistic information technology (IT) and operational technology (OT) networks. This setup both provides a controlled environment for simulating a wide array of cyber attacks, and mirrors potential real-world attack scenarios with a high degree of fidelity. The testbed serves as an invaluable resource for the study of cyber-physical security, offering a practical and dynamic platform for testing and validating cybersecurity measures in the context of networked electric drive systems. As a concrete example of the testbed’s capabilities, we have developed and implemented a Python-based script designed to execute step-stone attacks over a wireless local area network (WLAN). This script leverages a sequence of target IP addresses, simulating a real-world attack vector that could be exploited by adversaries. To counteract such threats, we demonstrate the efficacy of our developed cyber-attack detection algorithms, which are integral to our testbed’s security framework. Furthermore, the testbed incorporates a real-time visualization system using InfluxDB and Grafana, providing a dynamic and interactive representation of networked electric drives and their associated security monitoring mechanisms.more » « less
- 
            Cyber-physical system security is a significant concern in the critical infrastructure. Strong interdependencies between cyber and physical components render cyber-physical systems highly susceptible to integrity attacks such as injecting malicious data and projecting fake sensor measurements. Traditional security models partition cyber-physical systems into just two domains – high and low. This absolute partitioning is not well suited to cyber-physical systems because they comprise multiple overlapping partitions. Information flow properties, which model how inputs to a system affect its outputs across security partitions, are important considerations in cyber-physical systems. Information flows support traceability analysis that helps detect vulnerabilities and anomalous sources, contributing to the implementation of mitigation measures. This chapter describes an automated model with graph-based information flow traversal for identifying information flow paths in the Automatic Dependent Surveillance-Broadcast (ADS-B) system used in civilian aviation, and subsequently partitioning the flows into security domains. The results help identify ADS-B system vulnerabilities to failures and attacks, and determine potential mitigation measures.more » « less
- 
            Cyber-physical systems are vulnerable to a variety of cyber, physical and cyber-physical attacks. The security of cyber-physical systems can be enhanced beyond what can be achieved through firewalls and trusted components by building trust from observed and/or expected behaviors. These behaviors can be encoded as invariants. Information flows that do not satisfy the invariants are used to identify and isolate malfunctioning devices and cyber intrusions. However, the distributed architectures of cyber-physical systems often contain multiple access points that are physically and/or digitally linked. Thus, invariants may be difficult to determine and/or computationally prohibitive to check in real time. Researchers have employed various methods for determining the invariants by analyzing the designs of and/or data generated by cyber-physical systems such as water treatment plants and electric power grids. This chapter compares the effectiveness of detecting attacks on a water treatment plant using design-centric invariants versus data-centric rules, the latter generated using a variety of data mining methods. The methods are compared based on the maximization of true positives and minimization of false positives.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    