skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: First evaluation of stiff-in-soft host–inclusion systems: experimental synthesis of zircon inclusions in quartz crystals
Abstract

Quartz crystals with zircon inclusions were synthesized using a piston-cylinder apparatus to experimentally evaluate the use of inclusions in “soft” host minerals for elastic thermobarometry. Synthesized zircon inclusion strains and, therefore, pressures (Pinc) were measured using Raman spectroscopy and then compared with the expected inclusion strains and pressures calculated from elastic models. Measured inclusion strains and inclusion pressures are systematically more tensile than the expected values and, thus, re-calculated entrapment pressures are overestimated. These discrepancies are not caused by analytical biases or assumptions in the elastic models and strain calculations. Analysis shows that inclusion strain discrepancies progressively decrease with decreasing experimental temperature in the α-quartz field. This behavior is consistent with inelastic deformation of the host–inclusion pairs induced by the development of large differential stresses during experimental cooling. Therefore, inclusion strains are more reliable for inclusions trapped at lower temperature conditions in the α-quartz field where there is less inelastic deformation of the host–inclusion systems. On the other hand, entrapment isomekes of zircon inclusions entrapped in the β-quartz stability field plot along the α–β quartz phase boundary, suggesting that the inclusion strains were mechanically reset at the phase boundary during experimental cooling and decompression. Therefore, inclusions contained in soft host minerals can be used for elastic thermobarometry and inclusions contained in β-quartz may provide constraints on thePTat which the host–inclusion system crossed the phase boundary during exhumation.

 
more » « less
NSF-PAR ID:
10487865
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Contributions to Mineralogy and Petrology
Volume:
179
Issue:
2
ISSN:
0010-7999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Current models for elastic geobarometry have been developed with the assumption that the host and/or inclusion minerals are elastically isotropic. This assumption has limited applications of elastic thermobarometry to mineral inclusions contained in cubic quasi‐isotropic host minerals (e.g., garnet). Here, we report a new elastic model that takes into account the anisotropic elastic properties and relative crystallographic orientation (RCO) of a host‐inclusion system where both minerals are noncubic. This anisotropic elastic model can be used for host‐inclusion elastic thermobarometric calculations provided that the RCO and elastic properties of both the host and inclusion are known. We then used this anisotropic elastic model to numerically evaluate the effects of elastic anisotropy and RCO on the strains and stresses developed in a quartz inclusion entrapped in a zircon host after exhumation from known entrapmentPTconditions to roomPTconditions. We conclude that the anisotropic quartz‐in‐zircon elastic model is suitable for elastic thermobarometry and may be widely applicable to crustal rocks. Our results demonstrate that isotropic elastic models cannot be used to determine the entire strain state of an elastically anisotropic inclusion contained in an elastically anisotropic host mineral, and therefore may lead to errors on estimated remnant inclusion pressures.

     
    more » « less
  2. Upon exhumation and cooling, contrasting compressibilities and thermal expansivities induce differential strains (volume mismatches) between a host crystal and its inclusions. These strains can be quantified in situ using Raman spectroscopy or X-ray diffraction. Knowing equations of state and elastic properties of minerals, elastic thermobarometry inverts measured strains to calculate the pressure-temperature conditions under which the stress state was uniform in the host and inclusion. These are commonly interpreted to represent the conditions of inclusion entrapment. Modeling and experiments quantify corrections for inclusion shape, proximity to surfaces, and (most importantly) crystal-axis anisotropy, and they permit accurate application of the more common elastic thermobarometers. New research is exploring the conditions of crystal growth, reaction overstepping, and the magnitudes of differential stresses, as well as inelastic resetting of inclusion and host strain, and potential new thermobarometers for lower-symmetry minerals. ▪ A physics-based method is revolutionizing calculations of metamorphic pressures and temperatures. ▪ Inclusion shape, crystal anisotropy, and proximity to boundaries affect calculations but can be corrected for. ▪ New results are leading petrologists to reconsider pressure-temperature conditions, differential stresses, and thermodynamic equilibrium. 
    more » « less
  3. Abstract

    Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapmentP–Tconditions using an isotropic elastic model andP–T–Vequations of state for host and inclusion minerals. Elastic models are used to constrainP–Tcurves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the firstP–Testimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapmentP–Tconditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm−1bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress.values calculated from the 128, 206, and 464 cm−1bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm−1Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019, 234:129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an averageandof 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as theP–Tconditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. TheP–Tintersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range ofP–Tconditions thus permitting application of QuiG‐TiQ to many metamorphic rocks.

     
    more » « less
  4. Abstract

    We applied elastic thermobarometry on garnet-bearing migmatites along two transects through the crustal section at Sierra Valle Fértil-La Huerta, Argentina. We performed quartz-in-garnet barometry and zircon-in-garnet thermometry on metapelites from different paleo-depths across the crustal section. Our work recovers entrapment pressures ranging from 240 to 1330 MPa and entrapment temperatures between 691 and 1574 °C. The entrapment conditions are broadly consistent with anticipated pressures and temperatures along the crustal section derived previously using conventional, thermodynamic thermobarometers. The quartz-in-garnet barometer reproduces those conventionally established entrapment conditions when samples only experienced conditions within the alpha-quartz stability field. Raman-derived pressures for samples that experienced beta-quartz reference conditions are commonly much higher than those established by conventional barometry. Samples that preserve compressive (positive) residual pressures best reproduce reference entrapment pressures. Entrapment temperatures show high variability and overestimation of temperature conditions compared to conventional results. These results indicate elastic thermobarometry over- or under-estimates crystallization conditions in rocks crystallized at high temperatures, as is common in the Famatinian Arc deep-crust. We suggest that modeling quartz behavior across the alpha–beta transition may present challenges, as does shape maturation, viscous deformation, and radiation damage in zircon.

     
    more » « less
  5. Abstract Raman spectroscopy is widely used to identify mineral and fluid inclusions in host crystals, as well as to calculate pressure-temperature (P-T) conditions with mineral inclusion elastic thermobarometry, for example quartz-in-garnet barometry (QuiG) and zircon-in-garnet thermometry (ZiG). For thermobarometric applications, P-T precision and accuracy depend crucially on the reproducibility of Raman peak position measurements. In this study, we monitored long-term instrument stability and varied analytical parameters to quantify peak position reproducibility for Raman spectra from quartz and zircon inclusions and reference crystals. Our ultimate goal was to determine the reproducibility of calculated inclusion pressures (“Pinc”) and entrapment pressures (“Ptrap”) or temperatures (“Ttrap”) by quantifying diverse analytical errors, as well as to identify optimal measurement conditions and provide a baseline for interlaboratory comparisons. Most tests emphasized 442 nm (blue) and 532 nm (green) laser sources, although repeated analysis of a quartz inclusion in garnet additionally used a 632.8 nm (red) laser. Power density was varied from <1 to >100 mW and acquisition time from 3 to 270s. A correction is proposed to suppress interference on the ~206 cm–1 peak in quartz spectra by a broad nearby (~220 cm–1) peak in garnet spectra. Rapid peak drift up to 1 cm–1/h occurred after powering the laser source, followed by minimal drift (<0.2 cm–1/h) for several hours thereafter. However, abrupt shifts in peak positions as large as 2–3 cm–1 sometimes occurred within periods of minutes, commonly either positively or negatively correlated to changes in room temperature. An external Hg-emission line (fluorescent light) can be observed in spectra collected with the green laser and shows highly correlated but attenuated directional shifts compared to quartz and zircon peaks. Varying power density and acquisition time did not affect Raman peak positions of either quartz or zircon grains, possibly because power densities at the levels of inclusions were low. However, some zircon inclusions were damaged at higher power levels of the blue laser source, likely because of laser-induced heating. Using a combination of 1, 2, or 3 peak positions for the ~128, ~206, and ~464 cm–1 peaks in quartz to calculate Pinc and Ptrap showed that use of the blue laser source results in the most reproducible Ptrap values for all methods (0.59 to 0.68 GPa at an assumed temperature of 450 °C), with precisions for a single method as small as ±0.03 GPa (2σ). Using the green and red lasers, some methods of calculating Ptrap produce nearly identical estimates as the blue laser with similarly good precision (±0.02 GPa for green laser, ±0.03 GPa for red laser). However, using 1- and 2-peak methods to calculate Ptrap can yield values that range from 0.52 ± 0.06 to 0.93 ± 0.16 GPa for the green laser, and 0.53 ± 0.08 GPa to 1.00 ± 0.45 GPa for the red laser. Semiquantitative calculations for zircon, assuming a typical error of ±0.25 cm–1 in the position of the ~1008 cm–1 peak, imply reproducibility in temperature (at an assumed pressure) of approximately ±65 °C. For optimal applications to elastic thermobarometry, analysts should: (1) delay data collection approximately one hour after laser startup, or leave lasers on; (2) collect a Hg-emission line simultaneously with Raman spectra when using a green laser to correct for externally induced shifts in peak positions; (3) correct for garnet interference on the quartz 206 cm–1 peak; and either (4a) use a short wavelength (blue) laser for quartz and zircon crystals for P-T calculations, but use very low-laser power (<12 mW) to avoid overheating and damage or (4b) use either the intermediate wavelength (green; quartz and zircon) or long wavelength (red; zircon) laser for P-T calculations, but restrict calculations to specific methods. Implementation of our recommendations should optimize reproducibility for elastic geothermobarometry, especially QuiG barometry and ZiG thermometry. 
    more » « less