skip to main content


Title: Using Computational Models to Test Syntactic Learnability

We studied the learnability of English filler-gap dependencies and the “island” constraints on them by assessing the generalizations made by autoregressive (incremental) language models that use deep learning to predict the next word given preceding context. Using factorial tests inspired by experimental psycholinguistics, we found that models acquire not only the basic contingency between fillers and gaps, but also the unboundedness and hierarchical constraints implicated in the dependency. We evaluated a model’s acquisition of island constraints by demonstrating that its expectation for a filler-gap contingency is attenuated within an island environment. Our results provide empirical evidence against the argument from the poverty of the stimulus for this particular structure.

 
more » « less
Award ID(s):
2121074
NSF-PAR ID:
10488147
Author(s) / Creator(s):
; ;
Publisher / Repository:
MIT Press
Date Published:
Journal Name:
Linguistic Inquiry
ISSN:
0024-3892
Page Range / eLocation ID:
1 to 44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coastal river deltas are complex and dynamic ecosystems where vegetation plays an essential role in influencing, as well as being influenced by, physical processes, creating ecogeomorphic feedbacks between vegetation canopy characteristics and topography. However, this feedback is poorly understood. This knowledge gap is due to difficulties in detecting and quantifying the interactions that define the feedback. Emerging technology and data analysis techniques like transfer entropy have made it possible to overcome former difficulties associated with sampling constraints and delineate bidirectional feedback within many vegetation classes at the delta scale. Here the transfer entropy analysis was consistent with widespread understanding of marsh zonation, yet produced additional insight into which vegetation classes specifically had a dominant impact on topographic change. Ecogeomorphic feedback was resolvable only within native vegetation classes (NelumboandPolygonum) that occur over low to moderate elevations within the Wax Lake Delta Louisiana. In contrast, nonnative vegetation classes (ColocasiaandEichhornia) were not as effective at accreting sediment as native classes. The transfer entropy analysis suggests that different vegetation communities play functionally different roles in landscape evolution that should be differentiated in ecogeomorphic models. Within such models, it would be most imperative to resolve detailed flow characteristics at lower to low‐middle island elevations. Furthermore, within elevation zones, it is likely important to differentiate between the roles of multiple vegetation communities rather than treating the entire elevation zone as a single ecogeomorphic entity.

     
    more » « less
  2. In many areas of constrained optimization, representing all possible constraints that give rise to an accurate feasible region can be difficult and computationally prohibitive for online use. Satisfying feasibility constraints becomes more challenging in high-dimensional, non-convex regimes which are common in engineering applications. A prominent example that is explored in the manuscript is the security-constrained optimal power flow (SCOPF) problem, which minimizes power generation costs, while enforcing system feasibility under contingency failures in the transmission network. In its full form, this problem has been modeled as a nonlinear two-stage stochastic programming problem. In this work, we propose a hybrid structure that incorporates and takes advantage of both a high-fidelity physical model and fast machine learning surrogates. Neural network (NN) models have been shown to classify highly non-linear functions and can be trained offline but require large training sets. In this work, we present how model-guided sampling can efficiently create datasets that are highly informative to a NN classifier for non-convex functions. We show how the resultant NN surrogates can be integrated into a non-linear program as smooth, continuous functions to simultaneously optimize the objective function and enforce feasibility using existing non-linear solvers. Overall, this allows us to optimize instances of the SCOPF problem with an order of magnitude CPU improvement over existing methods.

     
    more » « less
  3. Abstract

    Conservation translocation projects must carefully balance multiple, potentially competing objectives (e.g. population viability, retention of genetic diversity, delivery of key ecological services) against conflicting stakeholder values and severe time and cost constraints. Advanced decision support tools would facilitate identifying practical solutions.

    We examined how to achieve compromise across competing objectives in conservation translocations via an examination of giant tortoises in the Galapagos Islands with ancestry from the extinct Floreana Island species (Chelonoidis niger). Efforts have begun to populate Floreana Island with tortoises genetically similar to its historical inhabitants while balancing three potentially competing objectives – restoring ecosystem services (sustaining a high tortoise population size), maximizing genome representation of the extinctC. nigerspecies and maintaining a genetically diverse population – under realistic cost constraints.

    We developed a novel approach to this conservation decision problem by coupling an individual‐based simulation model with generalized additive models and global optimization. We identified several incompatibilities among programme objectives, with quasi‐optimal single‐objective solutions (sets of management actions) differing substantially in programme duration, translocation age, incubation temperature (determinant of sex ratio) and the number of individuals directly translocated from the source population.

    Quasi‐optimal single‐objective solutions were able to produce outcomes (i.e. population size and measures of genetic diversity andC. nigergenome representation) to within 75% of their highest simulated outcomes (e.g. highest population size achieved across all simulations) within a cost constraint ofc. $2m USD, but these solutions resulted in severe declines (up to 74% reduction) in outcomes for non‐focal objectives. However, when all programme objectives were equally weighted to produce a multi‐objective solution, all objectives were met to within 90% of the highest achievable mean values across all cost constraints.

    Synthesis and applications. Multi‐objective conservation translocations are likely to encounter complex trade‐offs and conflicts among programme objectives. Here, we developed a novel combination of modelling approaches to identify optimal management strategies. We found that solutions that simultaneously addressed multiple, competing objectives performed better than single‐objective solutions. Our model‐based decision support tool demonstrates that timely, cost‐effective solutions can be identified in cases where management objectives appear to be incompatible.

     
    more » « less
  4. Abstract

    Invasive rodent eradications are frequently undertaken to curb island biodiversity loss. However, the breadth of rodents’ ecological impact, even after eradication, is not always fully recognized. For example, the most widespread invasive rodent, the black rat (Rattus rattus), while omnivorous, eats predominantly seeds and fruit. Yet, the effects of seed predation release after eradication on plant communities and ecological functions are not well understood, posing a gap for island restoration. We examined the role of seed predation release following black rat eradication in changes to tree composition and aboveground biomass across an islet network (Palmyra Atoll) in the Central Pacific. We conducted repeated surveys of seed, juvenile, and adult tree biomass and survival in permanent vegetation plots before and after the eradication of rats. We observed a 95% reduction in seed predation for an introduced, previously cultivated tree population (Cocos nucifera). Juvenile tree biomass of all species increased 14‐fold, withC. nuciferaincreasing the most, suggesting that eradication increased this tree's competitive advantage. Indeed, based on stage‐structured demographic models, rat eradication led to a 10% increase inC. nuciferapopulation growth rate. The effect of invasive rodent seed predation varies considerably among the plant species in a community and can shift competitive dynamics, sometimes in favor of invasive plants. These bottom‐up effects should be considered in evaluating the costs and benefits of eradication. Documenting the variation in invasive rodent diet items, along with long‐term surveys, can help prioritize island eradications where restoration is most likely to be successful.

     
    more » « less
  5. Power grids based on traditional N-1 design criteria are no longer adequate because these designs do not withstand extreme weather events or cascading failures. Microgrid system has the capability of enhancing grid resilience through defensive or islanded operations in contingency. This paper presents a probabilistic framework for planning resilient distribution system via distributed wind and solar integration. We first define three aspects of resilient distribution system, namely prevention, survivability and recovery. Then we review the distributed generation planning models that comprehend moment estimation, chance constraints and bi-directional power flow. We strive to achieve two objectives: 1) enhancing the grid survivability when distribution lines are damaged or disconnected in the aftermath of disaster attack; and 2) accelerating the recovery of damaged assets through pro-active maintenance and repair services. A simple 9-node network is provided to demonstrate the application of the proposed resilience planning framework 
    more » « less