skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Computational Models to Test Syntactic Learnability
We studied the learnability of English filler-gap dependencies and the “island” constraints on them by assessing the generalizations made by autoregressive (incremental) language models that use deep learning to predict the next word given preceding context. Using factorial tests inspired by experimental psycholinguistics, we found that models acquire not only the basic contingency between fillers and gaps, but also the unboundedness and hierarchical constraints implicated in the dependency. We evaluated a model’s acquisition of island constraints by demonstrating that its expectation for a filler-gap contingency is attenuated within an island environment. Our results provide empirical evidence against the argument from the poverty of the stimulus for this particular structure.  more » « less
Award ID(s):
2121074
PAR ID:
10488147
Author(s) / Creator(s):
; ;
Publisher / Repository:
MIT Press
Date Published:
Journal Name:
Linguistic Inquiry
ISSN:
0024-3892
Page Range / eLocation ID:
1 to 44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work we take a game-theoretic perspective on contingency planning, tailored to multi-agent scenarios in which a robot’s actions impact the decisions of other agents and vice versa. The resulting contingency game allows the robot to efficiently interact with other agents by generating strategic motion plans conditioned on multiple possible intents for other actors in the scene. Contingency games are parameterized via a scalar variable which represents a future time when intent uncertainty will be resolved. By estimating this parameter online, we construct a game-theoretic motion planner that adapts to changing beliefs while anticipating future certainty. We show that existing variants of game-theoretic planning under uncertainty are readily obtained as special cases of contingency games. Through a series of simulated autonomous driving scenarios, we demonstrate that contingency games close the gap between certainty-equivalent games that commit to a single hypothesis and non-contingent multi-hypothesis games that do not account for future uncertainty reduction. 
    more » « less
  2. null (Ed.)
    Thermal conductive gap filler materials are used as thermal interface materials (TIMs) in electronic devices due their numerous advantages, such as higher thermal conductivity, ease of use, and conformity. Silicone is a class of synthetic materials based on a polymeric siloxane backbone which is widely used in thermal gap filler materials. In electronic packages, silicone-based thermal gap filler materials are widely used in industries, whereas silicone-free thermal gap filler materials are emerging as new alternatives for numerous electronics applications. Certainly, characterization of these TIMs is of immense importance since it plays a critical role in heat dissipation and long-term reliability of the electronic packages. Insubstantial studies on the effects of various chemical compounds on the properties of silicone-based and silicone-free TIMs has led to this study, which focuses on the effect of thermal aging on the mechanical, thermal, and dielectric properties of silicone-based and silicone-free TIMs and the chemical compounds that cause the changes in properties of these materials. Characterization techniques such as dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and broadband dielectric spectroscopy (BbDS) are used to study the mechanical, thermal, and dielectric characteristics of these TIMs, which will guide towards a better understanding of the applicability and reliability of these TIMs. The experiments demonstrate that upon thermal aging at 125 °C, the silicone-free TIM becomes hard, while silicone-based TIM remains viscoelastic, which indicates its wide applicability to higher temperature applications for a long time. Though silicone-based TIM displays better mechanical and thermal properties at elevated temperatures, dielectric properties indicate low conductivity for silicone-free TIM, which makes it a better candidate for silicone-sensitive applications where higher electric insulation is desired. 
    more » « less
  3. A Monte Carlo analysis of a contingency optimal guidance strategy is conducted. The guidance strategy is applied to a Mars Entry problem in which it is assumed that the surface level atmospheric density is a random variable. First, a nominal guidance strategy is employed such that the optimal control problem is re-solved at constant guidance cycles. When the trajectory lies within a particular distance from a path constraint boundary, the nominal guidance strategy is replaced with a contingency guidance strategy, where the contingency guidance strategy attempts to prevent a violation in the the relevant path constraint. The contingency guidance strategy utilizes the reference optimal control problem formulation, but modifies the objective functional to maximize the margin between the path constraint limit and path constraint function value. The ability of the contingency guidance strat- egy to prevent violations in the path constraints is assessed via a Monte Carlo simulation. 
    more » « less
  4. A Monte Carlo analysis of a contingency optimal guidance strategy is conducted. The guidance strategy is applied to a Mars Entry problem in which it is assumed that the surface level atmospheric density is a random variable. First, a nominal guidance strategy is employed such that the optimal control problem is re-solved at constant guidance cycles. When the trajectory lies within a particular distance from a path constraint boundary, the nominal guidance strategy is replaced with a contingency guidance strategy, where the contingency guidance strategy attempts to prevent a violation in the the relevant path constraint. The contingency guidance strategy utilizes the reference optimal control problem formulation, but modifies the objective functional to maximize the margin between the path constraint limit and path constraint function value. The ability of the contingency guidance strategy to prevent violations in the path constraints is assessed via a Monte Carlo simulation. 
    more » « less
  5. Vat photopolymerization (VP) additive manufacturing involves selectively curing low‐viscosity photopolymers via exposure to ultraviolet light in a layer‐wise fashion. Dispersing filler materials in the photopolymer enables tailored end‐use properties, but also increases the viscosity and the timescale associated with interparticle network structural recovery postshear. These rheological properties influence self‐leveling and recoating of the liquid photopolymer mixture during VP. Herein, viscosity of photopolymer and rigid spherical glass microparticles (filler) is experimentally determined as a function of filler fraction, filler size distribution (mono‐ and polydisperse), shear rate, and temperature, which are important VP process parameters. Employing existing viscosity models for mono‐ and polydisperse polymer mixtures demonstrates that particle–particle interactions and the formation of nonspherical clusters of particles strongly affect the viscosity of both monodisperse and polydisperse mixtures with particle volume fractions > 0.05 due to agglomeration/deagglomeration of clusters at elevated shear rates. Consequently, unmodified viscosity models, which assume uniformly dispersed, rigid, spherical particles, are applicable only for mixtures with particle volume fractions < 0.05. It is shown that modifying model parameters such as the fluidity limit and intrinsic viscosity, which explicitly account for nonspherical clusters of particles, improves agreement between viscosity models and experiments, in particular when using a fractal approach. 
    more » « less